Quotient (universal algebra)In mathematics, a quotient algebra is the result of partitioning the elements of an algebraic structure using a congruence relation. Quotient algebras are also called factor algebras. Here, the congruence relation must be an equivalence relation that is additionally compatible with all the operations of the algebra, in the formal sense described below. Its equivalence classes partition the elements of the given algebraic structure. The quotient algebra has these classes as its elements, and the compatibility conditions are used to give the classes an algebraic structure.
Semidirect productIn mathematics, specifically in group theory, the concept of a semidirect product is a generalization of a direct product. There are two closely related concepts of semidirect product: an inner semidirect product is a particular way in which a group can be made up of two subgroups, one of which is a normal subgroup. an outer semidirect product is a way to construct a new group from two given groups by using the Cartesian product as a set and a particular multiplication operation.
Fundamental theorem on homomorphismsIn abstract algebra, the fundamental theorem on homomorphisms, also known as the fundamental homomorphism theorem, or the first isomorphism theorem, relates the structure of two objects between which a homomorphism is given, and of the kernel and of the homomorphism. The homomorphism theorem is used to prove the isomorphism theorems. Given two groups G and H and a group homomorphism f : G → H, let N be a normal subgroup in G and φ the natural surjective homomorphism G → G/N (where G/N is the quotient group of G by N).
Lattice of subgroupsIn mathematics, the lattice of subgroups of a group is the lattice whose elements are the subgroups of , with the partial order relation being set inclusion. In this lattice, the join of two subgroups is the subgroup generated by their union, and the meet of two subgroups is their intersection. The dihedral group Dih4 has ten subgroups, counting itself and the trivial subgroup. Five of the eight group elements generate subgroups of order two, and the other two non-identity elements both generate the same cyclic subgroup of order four.
Module homomorphismIn algebra, a module homomorphism is a function between modules that preserves the module structures. Explicitly, if M and N are left modules over a ring R, then a function is called an R-module homomorphism or an R-linear map if for any x, y in M and r in R, In other words, f is a group homomorphism (for the underlying additive groups) that commutes with scalar multiplication. If M, N are right R-modules, then the second condition is replaced with The of the zero element under f is called the kernel of f.
Universal algebraUniversal algebra (sometimes called general algebra) is the field of mathematics that studies algebraic structures themselves, not examples ("models") of algebraic structures. For instance, rather than take particular groups as the object of study, in universal algebra one takes the class of groups as an object of study. Algebraic structure In universal algebra, an algebra (or algebraic structure) is a set A together with a collection of operations on A. An n-ary operation on A is a function that takes n elements of A and returns a single element of A.
Modular latticeIn the branch of mathematics called order theory, a modular lattice is a lattice that satisfies the following self-dual condition, Modular lawa ≤ b implies a ∨ (x ∧ b) = (a ∨ x) ∧ b where x, a, b are arbitrary elements in the lattice, ≤ is the partial order, and ∨ and ∧ (called join and meet respectively) are the operations of the lattice. This phrasing emphasizes an interpretation in terms of projection onto the sublattice [a, b], a fact known as the diamond isomorphism theorem.
Quotient space (linear algebra)In linear algebra, the quotient of a vector space by a subspace is a vector space obtained by "collapsing" to zero. The space obtained is called a quotient space and is denoted (read " mod " or " by "). Formally, the construction is as follows. Let be a vector space over a field , and let be a subspace of . We define an equivalence relation on by stating that if . That is, is related to if one can be obtained from the other by adding an element of .
Rank–nullity theoremThe rank–nullity theorem is a theorem in linear algebra, which asserts: the number of columns of a matrix M is the sum of the rank of M and the nullity of M; and the dimension of the domain of a linear transformation f is the sum of the rank of f (the dimension of the of f) and the nullity of f (the dimension of the kernel of f). It follows that for linear transformations of vector spaces of finite dimension, either injectivity or surjectivity implies bijectivity.
Centralizer and normalizerIn mathematics, especially group theory, the centralizer (also called commutant) of a subset S in a group G is the set of elements of G that commute with every element of S, or equivalently, such that conjugation by leaves each element of S fixed. The normalizer of S in G is the set of elements of G that satisfy the weaker condition of leaving the set fixed under conjugation. The centralizer and normalizer of S are subgroups of G. Many techniques in group theory are based on studying the centralizers and normalizers of suitable subsets S.