ToposIn mathematics, a topos (USˈtɒpɒs, UKˈtoʊpoʊs,_ˈtoʊpɒs; plural topoi ˈtɒpɔɪ or ˈtoʊpɔɪ, or toposes) is a that behaves like the category of sheaves of sets on a topological space (or more generally: on a site). Topoi behave much like the and possess a notion of localization; they are a direct generalization of point-set topology. The Grothendieck topoi find applications in algebraic geometry; the more general elementary topoi are used in logic. The mathematical field that studies topoi is called topos theory.
Representable functorIn mathematics, particularly , a representable functor is a certain functor from an arbitrary into the . Such functors give representations of an abstract category in terms of known structures (i.e. sets and functions) allowing one to utilize, as much as possible, knowledge about the category of sets in other settings. From another point of view, representable functors for a category C are the functors given with C. Their theory is a vast generalisation of upper sets in posets, and of Cayley's theorem in group theory.
Scheme (mathematics)In mathematics, a scheme is a mathematical structure that enlarges the notion of algebraic variety in several ways, such as taking account of multiplicities (the equations x = 0 and x2 = 0 define the same algebraic variety but different schemes) and allowing "varieties" defined over any commutative ring (for example, Fermat curves are defined over the integers). Scheme theory was introduced by Alexander Grothendieck in 1960 in his treatise "Éléments de géométrie algébrique"; one of its aims was developing the formalism needed to solve deep problems of algebraic geometry, such as the Weil conjectures (the last of which was proved by Pierre Deligne).
Morphism of schemesIn algebraic geometry, a morphism of schemes generalizes a morphism of algebraic varieties just as a scheme generalizes an algebraic variety. It is, by definition, a morphism in the category of schemes. A morphism of algebraic stacks generalizes a morphism of schemes. By definition, a morphism of schemes is just a morphism of locally ringed spaces. A scheme, by definition, has open affine charts and thus a morphism of schemes can also be described in terms of such charts (compare the definition of morphism of varieties).
Yoneda lemmaIn mathematics, the Yoneda lemma is arguably the most important result in . It is an abstract result on functors of the type morphisms into a fixed object. It is a vast generalisation of Cayley's theorem from group theory (viewing a group as a miniature category with just one object and only isomorphisms). It allows the of any into a (contravariant set-valued functors) defined on that category. It also clarifies how the embedded category, of representable functors and their natural transformations, relates to the other objects in the larger functor category.
Pullback (category theory)In , a branch of mathematics, a pullback (also called a fiber product, fibre product, fibered product or Cartesian square) is the of a consisting of two morphisms f : X → Z and g : Y → Z with a common codomain. The pullback is written P = X ×f, Z, g Y. Usually the morphisms f and g are omitted from the notation, and then the pullback is written P = X ×Z Y. The pullback comes equipped with two natural morphisms P → X and P → Y. The pullback of two morphisms f and g need not exist, but if it does, it is essentially uniquely defined by the two morphisms.