Summary
Inverse transform sampling (also known as inversion sampling, the inverse probability integral transform, the inverse transformation method, Smirnov transform, or the golden rule) is a basic method for pseudo-random number sampling, i.e., for generating sample numbers at random from any probability distribution given its cumulative distribution function. Inverse transformation sampling takes uniform samples of a number between 0 and 1, interpreted as a probability, and then returns the smallest number such that for the cumulative distribution function of a random variable. For example, imagine that is the standard normal distribution with mean zero and standard deviation one. The table below shows samples taken from the uniform distribution and their representation on the standard normal distribution. We are randomly choosing a proportion of the area under the curve and returning the number in the domain such that exactly this proportion of the area occurs to the left of that number. Intuitively, we are unlikely to choose a number in the far end of tails because there is very little area in them which would require choosing a number very close to zero or one. Computationally, this method involves computing the quantile function of the distribution — in other words, computing the cumulative distribution function (CDF) of the distribution (which maps a number in the domain to a probability between 0 and 1) and then inverting that function. This is the source of the term "inverse" or "inversion" in most of the names for this method. Note that for a discrete distribution, computing the CDF is not in general too difficult: we simply add up the individual probabilities for the various points of the distribution. For a continuous distribution, however, we need to integrate the probability density function (PDF) of the distribution, which is impossible to do analytically for most distributions (including the normal distribution).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (9)
MATH-413: Statistics for data science
Statistics lies at the foundation of data science, providing a unifying theoretical and methodological backbone for the diverse tasks enountered in this emerging field. This course rigorously develops
PHYS-467: Machine learning for physicists
Machine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
BIO-449: Understanding statistics and experimental design
This course is neither an introduction to the mathematics of statistics nor an introduction to a statistics program such as R. The aim of the course is to understand statistics from its experimental d
Show more
Related lectures (40)
Elliptical Distributions: Properties and Applications
Covers elliptical distributions, including properties, applications, and risk management implications.
Monte Carlo: Optimization and Estimation
Explores optimization and estimation in Monte Carlo methods, emphasizing Bayes-optimal groups and estimators.
Diffusion Models
Explores diffusion models, focusing on generating samples from a distribution and the importance of denoising in the process.
Show more
Related publications (89)