Related concepts (16)
Fundamental theorem of Galois theory
In mathematics, the fundamental theorem of Galois theory is a result that describes the structure of certain types of field extensions in relation to groups. It was proved by Évariste Galois in his development of Galois theory. In its most basic form, the theorem asserts that given a field extension E/F that is finite and Galois, there is a one-to-one correspondence between its intermediate fields and subgroups of its Galois group. (Intermediate fields are fields K satisfying F ⊆ K ⊆ E; they are also called subextensions of E/F.
Separable extension
In field theory, a branch of algebra, an algebraic field extension is called a separable extension if for every , the minimal polynomial of over F is a separable polynomial (i.e., its formal derivative is not the zero polynomial, or equivalently it has no repeated roots in any extension field). There is also a more general definition that applies when E is not necessarily algebraic over F. An extension that is not separable is said to be inseparable.
Splitting field
In abstract algebra, a splitting field of a polynomial with coefficients in a field is the smallest field extension of that field over which the polynomial splits, i.e., decomposes into linear factors. A splitting field of a polynomial p(X) over a field K is a field extension L of K over which p factors into linear factors where and for each we have with ai not necessarily distinct and such that the roots ai generate L over K. The extension L is then an extension of minimal degree over K in which p splits.
Characteristic (algebra)
In mathematics, the characteristic of a ring R, often denoted char(R), is defined to be the smallest number of times one must use the ring's multiplicative identity (1) in a sum to get the additive identity (0). If this sum never reaches the additive identity the ring is said to have characteristic zero. That is, char(R) is the smallest positive number n such that: if such a number n exists, and 0 otherwise.
Frobenius endomorphism
In commutative algebra and field theory, the Frobenius endomorphism (after Ferdinand Georg Frobenius) is a special endomorphism of commutative rings with prime characteristic p, an important class which includes finite fields. The endomorphism maps every element to its p-th power. In certain contexts it is an automorphism, but this is not true in general. Let R be a commutative ring with prime characteristic p (an integral domain of positive characteristic always has prime characteristic, for example).
Separable polynomial
In mathematics, a polynomial P(X) over a given field K is separable if its roots are distinct in an algebraic closure of K, that is, the number of distinct roots is equal to the degree of the polynomial. This concept is closely related to square-free polynomial. If K is a perfect field then the two concepts coincide. In general, P(X) is separable if and only if it is square-free over any field that contains K, which holds if and only if P(X) is coprime to its formal derivative D P(X).
Perfect field
In algebra, a field k is perfect if any one of the following equivalent conditions holds: Every irreducible polynomial over k has distinct roots. Every irreducible polynomial over k is separable. Every finite extension of k is separable. Every algebraic extension of k is separable. Either k has characteristic 0, or, when k has characteristic p > 0, every element of k is a pth power. Either k has characteristic 0, or, when k has characteristic p > 0, the Frobenius endomorphism x ↦ x^p is an automorphism of k.
Normal extension
In abstract algebra, a normal extension is an algebraic field extension L/K for which every irreducible polynomial over K which has a root in L, splits into linear factors in L. These are one of the conditions for algebraic extensions to be a Galois extension. Bourbaki calls such an extension a quasi-Galois extension. Let be an algebraic extension (i.e. L is an algebraic extension of K), such that (i.e. L is contained in an algebraic closure of K).
Galois group
In mathematics, in the area of abstract algebra known as Galois theory, the Galois group of a certain type of field extension is a specific group associated with the field extension. The study of field extensions and their relationship to the polynomials that give rise to them via Galois groups is called Galois theory, so named in honor of Évariste Galois who first discovered them. For a more elementary discussion of Galois groups in terms of permutation groups, see the article on Galois theory.
Rational number
In mathematics, a rational number is a number that can be expressed as the quotient or fraction \tfrac p q of two integers, a numerator p and a non-zero denominator q. For example, \tfrac{-3}{7} is a rational number, as is every integer (e.g., 5 = 5/1). The set of all rational numbers, also referred to as "the rationals", the field of rationals or the field of rational numbers is usually denoted by boldface Q, or blackboard bold \Q. A rational number is a real number.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.