Summary
In abstract algebra, a splitting field of a polynomial with coefficients in a field is the smallest field extension of that field over which the polynomial splits, i.e., decomposes into linear factors. A splitting field of a polynomial p(X) over a field K is a field extension L of K over which p factors into linear factors where and for each we have with ai not necessarily distinct and such that the roots ai generate L over K. The extension L is then an extension of minimal degree over K in which p splits. It can be shown that such splitting fields exist and are unique up to isomorphism. The amount of freedom in that isomorphism is known as the Galois group of p (if we assume it is separable). An extension L which is a splitting field for a set of polynomials p(X) over K is called a normal extension of K. Given an algebraically closed field A containing K, there is a unique splitting field L of p between K and A, generated by the roots of p. If K is a subfield of the complex numbers, the existence is immediate. On the other hand, the existence of algebraic closures in general is often proved by 'passing to the limit' from the splitting field result, which therefore requires an independent proof to avoid circular reasoning. Given a separable extension K′ of K, a Galois closure L of K′ is a type of splitting field, and also a Galois extension of K containing K′ that is minimal, in an obvious sense. Such a Galois closure should contain a splitting field for all the polynomials p over K that are minimal polynomials over K of elements a of K′. Finding roots of polynomials has been an important problem since the time of the ancient Greeks. Some polynomials, however, such as x2 + 1 over R, the real numbers, have no roots. By constructing the splitting field for such a polynomial one can find the roots of the polynomial in the new field. Let F be a field and p(X) be a polynomial in the polynomial ring F[X] of degree n. The general process for constructing K, the splitting field of p(X) over F, is to construct a chain of fields such that Ki is an extension of Ki −1 containing a new root of p(X).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.