Résumé
En algèbre commutative, l'anneau des entiers est une construction que l'on peut obtenir à partir de tout corps de nombres en considérant ses éléments entiers. Par exemple, l'anneau des entiers de est . Il existe des algorithmes efficaces pour calculer cet anneau pour tout corps de nombres. La notion peut en fait être étendue à d'autres objets (notamment les corps de fonctions), et porte une interprétation géométrique. Élément entier Soit K un corps de nombres. Un élément de K est dit entier s'il est racine d'un polynôme unitaire à coefficients dans . L'ensemble des éléments entiers de K est un anneau, noté et appelé l'anneau des entiers de K. Une définition équivalente est que est l'unique ordre maximal de K. L'anneau est un ordre, en particulier un -module de type fini sans torsion, possédant donc une base, appelée base intégrale. Si est une telle base, le nombre n est le degré de l'extension . L'anneau est un anneau de Dedekind, et possède donc la propriété de factorisation unique des idéaux. Les unités forment un -module de type fini par le théorème de Dirichlet. Le sous-groupe de torsion de est constitué des racines de l'unité. Si est une extension finie d'un corps de nombres, alors la fermeture intégrale de dans K coïncide avec . Soit d un entier sans facteur carré et soit (qui est un corps quadratique si d ≠ 1). Alors, O est un anneau d'entiers quadratiques, égal à si (pour d = –1, c'est l'anneau des entiers de Gauss) ; si (en particulier, ). Plus généralement, soient m et n deux entiers sans facteur carré, , et (qui est un si m et n sont différents de 1 et distincts). Alors, L'anneau des entiers du n-ième corps cyclotomique est , et celui de son sous-corps réel maximal est . Si K est un corps local non archimédien, l'anneau O de ses entiers (défini de la même façon que pour un corps de nombres) est égal à sa boule unité fermée.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (16)
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
MATH-482: Number theory I.a - Algebraic number theory
Algebraic number theory is the study of the properties of solutions of polynomial equations with integral coefficients; Starting with concrete problems, we then introduce more general notions like alg
CS-119(c): Information, Computation, Communication
L'objectif de ce cours est d'introduire les étudiants à la pensée algorithmique, de les familiariser avec les fondamentaux de l'Informatique et de développer une première compétence en programmation (
Afficher plus
Publications associées (36)
Personnes associées (2)
Concepts associés (27)
Corps de nombres
En mathématiques, un corps de nombres algébriques (ou simplement corps de nombres) est une extension finie K du corps Q des nombres rationnels. En particulier, c'est une extension algébrique : tous les éléments de K sont des nombres algébriques, dont le degré divise le degré de l'extension. C'est aussi une extension séparable car Q est de caractéristique nulle donc parfait. Tout sous-corps de C engendré par un nombre fini de nombres algébriques est un corps de nombres.
Prime element
In mathematics, specifically in abstract algebra, a prime element of a commutative ring is an object satisfying certain properties similar to the prime numbers in the integers and to irreducible polynomials. Care should be taken to distinguish prime elements from irreducible elements, a concept which is the same in UFDs but not the same in general. An element p of a commutative ring R is said to be prime if it is not the zero element or a unit and whenever p divides ab for some a and b in R, then p divides a or p divides b.
Anneau de Dedekind
thumb|Richard Dedekind définit et établit les bases de la théorie des anneaux portant maintenant son nom. En mathématiques, un anneau de Dedekind est un anneau commutatif disposant de propriétés particulières (voir aussi anneau de Dedekind non commutatif). Sa formalisation initiale a pour objectif la description d'un ensemble d'entiers algébriques, ce concept est aussi utilisé en géométrie algébrique. Les anneaux de Dedekind doivent leur origine à la théorie algébrique des nombres.
Afficher plus
MOOCs associés (2)
Information, Calcul, Communication: Introduction à la pensée informatique
Dans une première partie, nous étudierons d’abord comment résoudre de manière très concrète un problème au moyen d’un algorithme, ce qui nous amènera dans un second temps à une des grandes questions d
Information, Calcul, Communication: Introduction à la pensée informatique
Dans une première partie, nous étudierons d’abord comment résoudre de manière très concrète un problème au moyen d’un algorithme, ce qui nous amènera dans un second temps à une des grandes questions d