Operator theoryIn mathematics, operator theory is the study of linear operators on function spaces, beginning with differential operators and integral operators. The operators may be presented abstractly by their characteristics, such as bounded linear operators or closed operators, and consideration may be given to nonlinear operators. The study, which depends heavily on the topology of function spaces, is a branch of functional analysis. If a collection of operators forms an algebra over a field, then it is an operator algebra.
Multiplication operatorIn operator theory, a multiplication operator is an operator Tf defined on some vector space of functions and whose value at a function φ is given by multiplication by a fixed function f. That is, for all φ in the domain of Tf, and all x in the domain of φ (which is the same as the domain of f). This type of operator is often contrasted with composition operators. Multiplication operators generalize the notion of operator given by a diagonal matrix.
Shift spaceIn symbolic dynamics and related branches of mathematics, a shift space or subshift is a set of infinite words that represent the evolution of a discrete system. In fact, shift spaces and symbolic dynamical systems are often considered synonyms. The most widely studied shift spaces are the subshifts of finite type and the sofic shifts. In the classical framework a shift space is any subset of , where is a finite set, which is closed for the Tychonov topology and invariant by translations.
Transfer operatorIn mathematics, the transfer operator encodes information about an iterated map and is frequently used to study the behavior of dynamical systems, statistical mechanics, quantum chaos and fractals. In all usual cases, the largest eigenvalue is 1, and the corresponding eigenvector is the invariant measure of the system. The transfer operator is sometimes called the Ruelle operator, after David Ruelle, or the Perron–Frobenius operator or Ruelle–Perron–Frobenius operator, in reference to the applicability of the Perron–Frobenius theorem to the determination of the eigenvalues of the operator.
Normal operatorIn mathematics, especially functional analysis, a normal operator on a complex Hilbert space H is a continuous linear operator N : H → H that commutes with its hermitian adjoint N*, that is: NN* = NN. Normal operators are important because the spectral theorem holds for them. The class of normal operators is well understood. Examples of normal operators are unitary operators: N = N−1 Hermitian operators (i.e., self-adjoint operators): N* = N Skew-Hermitian operators: N* = −N positive operators: N = MM* for some M (so N is self-adjoint).
Spectrum (functional analysis)In mathematics, particularly in functional analysis, the spectrum of a bounded linear operator (or, more generally, an unbounded linear operator) is a generalisation of the set of eigenvalues of a matrix. Specifically, a complex number is said to be in the spectrum of a bounded linear operator if either has no set-theoretic inverse; or the set-theoretic inverse is either unbounded or defined on a non-dense subset. Here, is the identity operator. By the closed graph theorem, is in the spectrum if and only if the bounded operator is non-bijective on .
Unitary operatorIn functional analysis, a unitary operator is a surjective bounded operator on a Hilbert space that preserves the inner product. Unitary operators are usually taken as operating on a Hilbert space, but the same notion serves to define the concept of isomorphism between Hilbert spaces. A unitary element is a generalization of a unitary operator. In a unital algebra, an element U of the algebra is called a unitary element if UU = UU = I, where I is the identity element. Definition 1.