Proof that π is irrationalIn the 1760s, Johann Heinrich Lambert was the first to prove that the number pi is irrational, meaning it cannot be expressed as a fraction , where and are both integers. In the 19th century, Charles Hermite found a proof that requires no prerequisite knowledge beyond basic calculus. Three simplifications of Hermite's proof are due to Mary Cartwright, Ivan Niven, and Nicolas Bourbaki. Another proof, which is a simplification of Lambert's proof, is due to Miklós Laczkovich. Many of these are proofs by contradiction.
Infinite productIn mathematics, for a sequence of complex numbers a1, a2, a3, ... the infinite product is defined to be the limit of the partial products a1a2...an as n increases without bound. The product is said to converge when the limit exists and is not zero. Otherwise the product is said to diverge. A limit of zero is treated specially in order to obtain results analogous to those for infinite sums. Some sources allow convergence to 0 if there are only a finite number of zero factors and the product of the non-zero factors is non-zero, but for simplicity we will not allow that here.
Fibonacci sequenceIn mathematics, the Fibonacci sequence is a sequence in which each number is the sum of the two preceding ones. Numbers that are part of the Fibonacci sequence are known as Fibonacci numbers, commonly denoted Fn . The sequence commonly starts from 0 and 1, although some authors start the sequence from 1 and 1 or sometimes (as did Fibonacci) from 1 and 2. Starting from 0 and 1, the first few values in the sequence are: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144.
Padé tableIn complex analysis, a Padé table is an array, possibly of infinite extent, of the rational Padé approximants Rm, n to a given complex formal power series. Certain sequences of approximants lying within a Padé table can often be shown to correspond with successive convergents of a continued fraction representation of a holomorphic or meromorphic function. Although earlier mathematicians had obtained sporadic results involving sequences of rational approximations to transcendental functions, Frobenius (in 1881) was apparently the first to organize the approximants in the form of a table.
Joseph LiouvilleJoseph Liouville (ˌli:u:ˈvɪl; ʒɔzɛf ljuvil; 24 March 1809 – 8 September 1882) was a French mathematician and engineer. He was born in Saint-Omer in France on 24 March 1809. His parents were Claude-Joseph Liouville (an army officer) and Thérèse Liouville (née Balland). Liouville gained admission to the École Polytechnique in 1825 and graduated in 1827. Just like Augustin-Louis Cauchy before him, Liouville studied engineering at École des Ponts et Chaussées after graduating from the Polytechnique, but opted instead for a career in mathematics.
Farey sequenceIn mathematics, the Farey sequence of order n is the sequence of completely reduced fractions, either between 0 and 1, or without this restriction, which when in lowest terms have denominators less than or equal to n, arranged in order of increasing size. With the restricted definition, each Farey sequence starts with the value 0, denoted by the fraction 0/1, and ends with the value 1, denoted by the fraction 1/1 (although some authors omit these terms).
Commensurability (mathematics)In mathematics, two non-zero real numbers a and b are said to be commensurable if their ratio a/b is a rational number; otherwise a and b are called incommensurable. (Recall that a rational number is one that is equivalent to the ratio of two integers.) There is a more general notion of commensurability in group theory. For example, the numbers 3 and 2 are commensurable because their ratio, 3/2, is a rational number. The numbers and are also commensurable because their ratio, , is a rational number.
Dyadic rationalIn mathematics, a dyadic rational or binary rational is a number that can be expressed as a fraction whose denominator is a power of two. For example, 1/2, 3/2, and 3/8 are dyadic rationals, but 1/3 is not. These numbers are important in computer science because they are the only ones with finite binary representations. Dyadic rationals also have applications in weights and measures, musical time signatures, and early mathematics education. They can accurately approximate any real number.
Square root of 3The square root of 3 is the positive real number that, when multiplied by itself, gives the number 3. It is denoted mathematically as or . It is more precisely called the principal square root of 3 to distinguish it from the negative number with the same property. The square root of 3 is an irrational number. It is also known as Theodorus' constant, after Theodorus of Cyrene, who proved its irrationality. its numerical value in decimal notation had been computed to at least ten billion digits.
Dyadic transformationThe dyadic transformation (also known as the dyadic map, bit shift map, 2x mod 1 map, Bernoulli map, doubling map or sawtooth map) is the mapping (i.e., recurrence relation) (where is the set of sequences from ) produced by the rule Equivalently, the dyadic transformation can also be defined as the iterated function map of the piecewise linear function The name bit shift map arises because, if the value of an iterate is written in binary notation, the next iterate is obtained by shifting the binary point one bit to the right, and if the bit to the left of the new binary point is a "one", replacing it with a zero.