DeepDream is a computer vision program created by Google engineer Alexander Mordvintsev that uses a convolutional neural network to find and enhance patterns in s via algorithmic pareidolia, thus creating a dream-like appearance reminiscent of a psychedelic experience in the deliberately overprocessed images.
Google's program popularized the term (deep) "dreaming" to refer to the generation of images that produce desired activations in a trained deep network, and the term now refers to a collection of related approaches.
The DeepDream software, originated in a deep convolutional network codenamed "Inception" after the film of the same name, was developed for the (ILSVRC) in 2014 and released in July 2015.
The dreaming idea and name became popular on the internet in 2015 thanks to Google's DeepDream program. The idea dates from early in the history of neural networks, and similar methods have been used to synthesize visual textures.
Related visualization ideas were developed (prior to Google's work) by several research groups.
After Google published their techniques and made their code open-source, a number of tools in the form of web services, mobile applications, and desktop software appeared on the market to enable users to transform their own photos.
The software is designed to detect faces and other patterns in images, with the aim of automatically classifying images. However, once trained, the network can also be run in reverse, being asked to adjust the original image slightly so that a given output neuron (e.g. the one for faces or certain animals) yields a higher confidence score. This can be used for visualizations to understand the emergent structure of the neural network better, and is the basis for the DeepDream concept. This reversal procedure is never perfectly clear and unambiguous because it utilizes a one-to-many mapping process. However, after enough reiterations, even imagery initially devoid of the sought features will be adjusted enough that a form of pareidolia results, by which psychedelic and surreal images are generated algorithmically.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
Since 2010 approaches in deep learning have revolutionized fields as diverse as computer vision, machine learning, or artificial intelligence. This course gives a systematic introduction into influent
This course provides an overview of key advances in continuous optimization and statistical analysis for machine learning. We review recent learning formulations and models as well as their guarantees
In this thesis, we study two closely related directions: robustness and generalization in modern deep learning. Deep learning models based on empirical risk minimization are known to be often non-robust to small, worst-case perturbations known as adversari ...
The project introduces an innovative visual method for analysing libraries and archives, with a focus on Bibliotheca Hertziana’s library collection. This collection, which dates back over a century, is examined by integrating user loan data with deep mappi ...
Whereas the ability of deep networks to produce useful predictions on many kinds of data has been amply demonstrated, estimating the reliability of these predictions remains challenging. Sampling approaches such as MC-Dropout and Deep Ensembles have emerge ...