A chemical structure of a molecule is a spatial arrangement of its atoms and their chemical bonds. Its determination includes a chemist's specifying the molecular geometry and, when feasible and necessary, the electronic structure of the target molecule or other solid. Molecular geometry refers to the spatial arrangement of atoms in a molecule and the chemical bonds that hold the atoms together and can be represented using structural formulae and by molecular models; complete electronic structure descriptions include specifying the occupation of a molecule's molecular orbitals. Structure determination can be applied to a range of targets from very simple molecules (e.g., diatomic oxygen or nitrogen) to very complex ones (e.g., such as protein or DNA). Theories of chemical structure were first developed by August Kekulé, Archibald Scott Couper, and Aleksandr Butlerov, among others, from about 1858. These theories were first to state that chemical compounds are not a random cluster of atoms and functional groups, but rather had a definite order defined by the valency of the atoms composing the molecule, giving the molecules a three dimensional structure that could be determined or solved. Concerning chemical structure, one has to distinguish between pure connectivity of the atoms within a molecule (chemical constitution), a description of a three-dimensional arrangement (molecular configuration, includes e.g. information on chirality) and the precise determination of bond lengths, angles and torsion angles, i.e. a full representation of the (relative) atomic coordinates. In determining structures of chemical compounds, one generally aims to obtain, first and minimally, the pattern and degree of bonding between all atoms in the molecule; when possible, one seeks the three dimensional spatial coordinates of the atoms in the molecule (or other solid). The methods by which one can determine the structure of a molecule is called structural elucidation.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (26)
MSE-360: Polymer science + TP
Introduction à la physique des polymères et aux liens entre structures chimiques et propriétés macroscopiques, avec accent sur la morphologie et le comportement thermomécanique. Méthodes de mise en œu
CH-352: Introduction to cheminformatics
Introduction aux concepts de base de cheminformatique et aux principaux outils utilisés. Applications potentielles de ces outils en recherche pour la gestion de l'information.
MSE-431: Physical chemistry of polymeric materials
The student has a basic understanding of the physical and physicochemical principles which result from the chainlike structure of synthetic macromolecules. The student can predict major characteristic
Show more
Related lectures (75)
Potential Energy Scans and Trajectories Visualisation
Explores potential energy scans on complex molecules and demonstrates how to compute rotational barriers and visualize energy profiles.
Organic Chemistry: Fundamentals and Applications
Covers the fundamentals of organic chemistry and its applications in materials science.
Slabs: Support and Thickness
Discusses pre-dimensioning and calculation of slab thickness for various support conditions.
Show more
Related publications (330)

Excited State-Specific CASSCF Theory for the Torsion of Ethylene

State-specific complete active space self-consistent field (SS-CASSCF) theory has emerged as a promising route to accurately predict electronically excited energy surfaces away from molecular equilibria. However, its accuracy and practicality for chemical ...
Amer Chemical Soc2024

Plasmonically enhanced molecular junctions for investigation of atomic-scale fluctuations in self-assembled monolayers

Sakthi Priya Amirtharaj

Molecular junctions represent a fascinating frontier in the realm of nanotechnology and are one of thesmallest optoelectronic devices possible, consisting of individual molecules or a group of moleculesthat serve as the active element sandwiched between co ...
EPFL2024

Investigation of mycelium film as the adhesive for poplar veneer bonding: insight into interfacial bonding mechanisms

Wenjing Sun

The emergence of mycelium-bonded biocomposites has been stimulated in the quest for sustainable development. These biocomposites exhibit enhanced mechanical properties through hot pressing, with mycelium playing a crucial role as both the adhesive and rein ...
Abingdon2024
Show more
Related concepts (16)
Molecular geometry
Molecular geometry is the three-dimensional arrangement of the atoms that constitute a molecule. It includes the general shape of the molecule as well as bond lengths, bond angles, torsional angles and any other geometrical parameters that determine the position of each atom. Molecular geometry influences several properties of a substance including its reactivity, polarity, phase of matter, color, magnetism and biological activity. The angles between bonds that an atom forms depend only weakly on the rest of molecule, i.
Chemical compound
A chemical compound is a chemical substance composed of many identical molecules (or molecular entities) containing atoms from more than one chemical element held together by chemical bonds. A molecule consisting of atoms of only one element is therefore not a compound. A compound can be transformed into a different substance by a chemical reaction, which may involve interactions with other substances. In this process, bonds between atoms may be broken and/or new bonds formed.
Nuclear magnetic resonance
Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a strong constant magnetic field are perturbed by a weak oscillating magnetic field (in the near field) and respond by producing an electromagnetic signal with a frequency characteristic of the magnetic field at the nucleus. This process occurs near resonance, when the oscillation frequency matches the intrinsic frequency of the nuclei, which depends on the strength of the static magnetic field, the chemical environment, and the magnetic properties of the isotope involved; in practical applications with static magnetic fields up to ca.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.