In mathematics, contact geometry is the study of a geometric structure on smooth manifolds given by a hyperplane distribution in the tangent bundle satisfying a condition called 'complete non-integrability'. Equivalently, such a distribution may be given (at least locally) as the kernel of a differential one-form, and the non-integrability condition translates into a maximal non-degeneracy condition on the form. These conditions are opposite to two equivalent conditions for 'complete integrability' of a hyperplane distribution, i.e. that it be tangent to a codimension one foliation on the manifold, whose equivalence is the content of the Frobenius theorem.
Contact geometry is in many ways an odd-dimensional counterpart of symplectic geometry, a structure on certain even-dimensional manifolds. Both contact and symplectic geometry are motivated by the mathematical formalism of classical mechanics, where one can consider either the even-dimensional phase space of a mechanical system or constant-energy hypersurface, which, being codimension one, has odd dimension.
Like symplectic geometry, contact geometry has broad applications in physics, e.g. geometrical optics, classical mechanics, thermodynamics, geometric quantization, integrable systems and to control theory. Contact geometry also has applications to low-dimensional topology; for example, it has been used by Kronheimer and Mrowka to prove the property P conjecture, by Michael Hutchings to define an invariant of smooth three-manifolds, and by Lenhard Ng to define invariants of knots. It was also used by Yakov Eliashberg to derive a topological characterization of Stein manifolds of dimension at least six.
A contact structure on an odd dimensional manifold is a smoothly varying family of codimension one subspaces of each tangent space of the manifold, satisfying a non-integrability condition. The family may be described as a section of a bundle as follows:
Given an n-dimensional smooth manifold M, and a point p ∈ M, a contact element of M with contact point p is an (n − 1)-dimensional linear subspace of the tangent space to M at p.