A biological membrane, biomembrane or cell membrane is a selectively permeable membrane that separates the interior of a cell from the external environment or creates intracellular compartments by serving as a boundary between one part of the cell and another. Biological membranes, in the form of eukaryotic cell membranes, consist of a phospholipid bilayer with embedded, integral and peripheral proteins used in communication and transportation of chemicals and ions. The bulk of lipids in a cell membrane provides a fluid matrix for proteins to rotate and laterally diffuse for physiological functioning. Proteins are adapted to high membrane fluidity environment of the lipid bilayer with the presence of an annular lipid shell, consisting of lipid molecules bound tightly to the surface of integral membrane proteins. The cell membranes are different from the isolating tissues formed by layers of cells, such as mucous membranes, basement membranes, and serous membranes.
Cell membrane and Lipid bilayer
The lipid bilayer consists of two layers- an outer leaflet and an inner leaflet. The components of bilayers are distributed unequally between the two surfaces to create asymmetry between the outer and inner surfaces. This asymmetric organization is important for cell functions such as cell signaling. The asymmetry of the biological membrane reflects the different functions of the two leaflets of the membrane. As seen in the fluid membrane model of the phospholipid bilayer, the outer leaflet and inner leaflet of the membrane are asymmetrical in their composition. Certain proteins and lipids rest only on one surface of the membrane and not the other.
• Both the plasma membrane and internal membranes have cytosolic and exoplasmic faces
• This orientation is maintained during membrane trafficking – proteins, lipids, glycoconjugates facing the lumen of the ER and Golgi get expressed on the extracellular side of the plasma membrane. In eucaryotic cells, new phospholipids are manufactured by enzymes bound to the part of the endoplasmic reticulum membrane that faces the cytosol.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The cell membrane (also known as the plasma membrane or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of a cell from the outside environment (the extracellular space). The cell membrane consists of a lipid bilayer, made up of two layers of phospholipids with cholesterols (a lipid component) interspersed between them, maintaining appropriate membrane fluidity at various temperatures.
The lipid bilayer (or phospholipid bilayer) is a thin polar membrane made of two layers of lipid molecules. These membranes are flat sheets that form a continuous barrier around all cells. The cell membranes of almost all organisms and many viruses are made of a lipid bilayer, as are the nuclear membrane surrounding the cell nucleus, and membranes of the membrane-bound organelles in the cell. The lipid bilayer is the barrier that keeps ions, proteins and other molecules where they are needed and prevents them from diffusing into areas where they should not be.
Lipids are a broad group of organic compounds which include fats, waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E and K), monoglycerides, diglycerides, phospholipids, and others. The functions of lipids include storing energy, signaling, and acting as structural components of cell membranes. Lipids have applications in the cosmetic and food industries, and in nanotechnology.
Learn about how the quality of water is a direct result of complex bio-geo-chemical interactions, and about how to use these processes to mitigate water quality issues.
Understand and use the results and methods of population genetics, population dynamics, network theory, and reaction network dynamics to analyze and predict the behavior of living systems
Membrane organization.
Investigate the compartmentalisation of biological membranes: what are the determinants of the localization of transmembrane proteins in the 2 dimensional space of the membranes
In this course we will study the cell (minimum unit of life) and its components. We will study several key cellular features: Membranes, genomes, channels and receptors. We will apply the laws of phys
Covers neuromorphic computing, challenges in ternary and binary computing, hardware simulations of the brain, and new materials for artificial brain cells.
Explores protein hydropathy analysis using ProtScale tool for human beta globin and aquaporin 1.
Explores the structure, dynamics, and functions of biological membranes.
STARD4 regulates cholesterol homeostasis by transferring cholesterol between the plasma membrane and endoplasmic reticulum. The STARD4 structure features a helix-grip fold surrounding a large hydrophobic cavity holding the sterol. Its access is controlled ...
Academic Press Ltd- Elsevier Science Ltd2024
, , , , , , , , ,
Macrocycles offer an attractive format for drug development due to their good binding properties and potential to cross cell membranes. To efficiently identify macrocyclic ligands for new targets, methods for the synthesis and screening of large combinator ...
Cells have evolved endocytic pathways to internalize different molecules, to regulate intra-cellular communication and their interaction with external environment. Pathogens have co-evolved with cells to exploit these processes for infections. In particula ...