In soil mechanics, dilatancy is the volume change observed in granular materials when they are subjected to shear deformations. This effect was first described scientifically by Osborne Reynolds in 1885/1886 and is also known as Reynolds dilatancy. It was brought into the field of geotechnical engineering by Peter Walter Rowe.
Unlike most other solid materials, the tendency of a compacted dense granular material is to dilate (expand in volume) as it is sheared. This occurs because the grains in a compacted state are interlocking and therefore do not have the freedom to move around one another. When stressed, a lever motion occurs between neighboring grains, which produces a bulk expansion of the material. On the other hand, when a granular material starts in a very loose state it may continuously compact instead of dilating under shear. A sample of a material is called dilative if its volume increases with increasing shear and contractive if the volume decreases with increasing shear.
Dilatancy is a common feature of soils and sands. Its effect can be seen when the wet sand around the foot of a person walking on beach appears to dry up. The deformation caused by the foot expands the sand under it and the water in the sand moves to fill the new space between the grains.
The phenomenon of dilatancy can be observed in a drained simple shear test on a sample of dense sand. In the initial stage of deformation, the volumetric strain decreases as the shear strain increases. But as the stress approaches its peak value, the volumetric strain starts to increase. After some more shear, the soil sample has a larger volume than when the test was started.
The amount of dilation depends strongly on the initial density of the soil. In general, the denser the soil, the greater the amount of volume expansion under shear. It has also been observed that the angle of internal friction decreases as the effective normal stress is decreased.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course aims at providing future civil engineers with the knowledge of geomechanics for professional practice. It addresses, among others, the main stress-strain constitutive models within the cont
The course aims at providing future civil engineers with a comprehensive view on soil slope stability. It addresses landslide types and mass movement classification; slope failure mechanisms and metho
Explores unsaturated soil behavior, emphasizing water retention and mechanical properties.
Explores the critical state concept in geomechanics, focusing on unsaturated soils and Terzaghi's effective stress validity.
Explores the critical state concept in geomechanics, covering stress paths, shear strength, and soil behavior under different stress conditions.
Shear strength is a term used in soil mechanics to describe the magnitude of the shear stress that a soil can sustain. The shear resistance of soil is a result of friction and interlocking of particles, and possibly cementation or bonding of particle contacts. Due to interlocking, particulate material may expand or contract in volume as it is subject to shear strains. If soil expands its volume, the density of particles will decrease and the strength will decrease; in this case, the peak strength would be followed by a reduction of shear stress.
A triaxial shear test is a common method to measure the mechanical properties of many deformable solids, especially soil (e.g., sand, clay) and rock, and other granular materials or powders. There are several variations on the test. In a triaxial shear test, stress is applied to a sample of the material being tested in a way which results in stresses along one axis being different from the stresses in perpendicular directions.
Soil liquefaction occurs when a cohesionless saturated or partially saturated soil substantially loses strength and stiffness in response to an applied stress such as shaking during an earthquake or other sudden change in stress condition, in which material that is ordinarily a solid behaves like a liquid. In soil mechanics, the term "liquefied" was first used by Allen Hazen in reference to the 1918 failure of the Calaveras Dam in California.
In this research, the flow features around a spur dike located in a 90˚ sharp channel bend have been studied experimentally in detail. Results showed that the effects of the spur dike on upstream sections increased by increasing α (spur dike location from ...
The complex mechanics of porous and granular media play a significant role in various industrial processes and natural phenomena. As an example, understanding the mechanics of how failure occurs, localizes and propagates in porous brittle solids under vari ...
In the evolution of structural glass beam elements, the requirements for post-fracture load bearing capacity and safe failure behaviour have led to the development of reinforced and post-tensioned beams. Maximum bending capacity in the post-fracture state ...