In mathematics, specifically in group theory, an elementary abelian group is an abelian group in which all elements other than the identity have the same order. This common order must be a prime number, and the elementary abelian groups in which the common order is p are a particular kind of p-group. A group for which p = 2 (that is, an elementary abelian 2-group) is sometimes called a Boolean group. Every elementary abelian p-group is a vector space over the prime field with p elements, and conversely every such vector space is an elementary abelian group. By the classification of finitely generated abelian groups, or by the fact that every vector space has a basis, every finite elementary abelian group must be of the form (Z/pZ)n for n a non-negative integer (sometimes called the group's rank). Here, Z/pZ denotes the cyclic group of order p (or equivalently the integers mod p), and the superscript notation means the n-fold direct product of groups. In general, a (possibly infinite) elementary abelian p-group is a direct sum of cyclic groups of order p. (Note that in the finite case the direct product and direct sum coincide, but this is not so in the infinite case.) In the rest of this article, all groups are assumed finite. The elementary abelian group (Z/2Z)2 has four elements: {(0,0), (0,1), (1,0), (1,1)} . Addition is performed componentwise, taking the result modulo 2. For instance, (1,0) + (1,1) = (0,1). This is in fact the Klein four-group. In the group generated by the symmetric difference on a (not necessarily finite) set, every element has order 2. Any such group is necessarily abelian because, since every element is its own inverse, xy = (xy)−1 = y−1x−1 = yx. Such a group (also called a Boolean group), generalizes the Klein four-group example to an arbitrary number of components. (Z/pZ)n is generated by n elements, and n is the least possible number of generators. In particular, the set {e1, ..., en} , where ei has a 1 in the ith component and 0 elsewhere, is a minimal generating set.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (5)
MATH-310: Algebra
This is an introduction to modern algebra: groups, rings and fields.
MATH-211: Algebra II - groups
This course deals with group theory, with particular emphasis on group actions and notions of category theory.
CH-250: Mathematical methods in chemistry
This course consists of two parts. The first part covers basic concepts of molecular symmetry and the application of group theory to describe it. The second part introduces Laplace transforms and Four
Show more
Related lectures (52)
Group Theory - Part 2
Explores Cayley tables, group operations, homomorphisms, Lie groups, and differentiable groups.
Group Operations and Quotients
Explores group operations with cyclic properties and the universal ownership of quotients.
Resoluble Groups: Quotients of Group
Covers the definition of solvable groups and the abelian property of group quotients.
Show more
Related publications (24)

Large charge, semiclassics and superfluids : from broken symmetries to conformal field theories

Gabriel Francisco Cuomo

This thesis explores the application of semiclassical methods in the study of states with large quantum numbers for theories invariant under internal symmetries. In the first part of the thesis, we study zero-temperature superfluids. These provide a gener ...
EPFL2020

Hasse principles for multinorm equations

Eva Bayer Fluckiger, Ting-Yu Lee

A classical result of Hasse states that the norm principle holds for finite cyclic extensions of global fields, in other words local norms are global norms. We investigate the norm principle for finite dimensional commutative kale algebras over global fiel ...
2019

On finitely generated modules over quasi-Euclidean rings

Luc Guyot

Let R be a unital commutative ring, and let M be an R-module that is generated by k elements but not less. Let be the subgroup of generated by the elementary matrices. In this paper we study the action of by matrix multiplication on the set of unimodular r ...
Springer Verlag2017
Show more
Related concepts (5)
P-group
In mathematics, specifically group theory, given a prime number p, a p-group is a group in which the order of every element is a power of p. That is, for each element g of a p-group G, there exists a nonnegative integer n such that the product of pn copies of g, and not fewer, is equal to the identity element. The orders of different elements may be different powers of p. Abelian p-groups are also called p-primary or simply primary. A finite group is a p-group if and only if its order (the number of its elements) is a power of p.
Heisenberg group
In mathematics, the Heisenberg group , named after Werner Heisenberg, is the group of 3×3 upper triangular matrices of the form under the operation of matrix multiplication. Elements a, b and c can be taken from any commutative ring with identity, often taken to be the ring of real numbers (resulting in the "continuous Heisenberg group") or the ring of integers (resulting in the "discrete Heisenberg group"). The continuous Heisenberg group arises in the description of one-dimensional quantum mechanical systems, especially in the context of the Stone–von Neumann theorem.
Presentation of a group
In mathematics, a presentation is one method of specifying a group. A presentation of a group G comprises a set S of generators—so that every element of the group can be written as a product of powers of some of these generators—and a set R of relations among those generators. We then say G has presentation Informally, G has the above presentation if it is the "freest group" generated by S subject only to the relations R. Formally, the group G is said to have the above presentation if it is isomorphic to the quotient of a free group on S by the normal subgroup generated by the relations R.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.