Ramification groupIn number theory, more specifically in local class field theory, the ramification groups are a filtration of the Galois group of a local field extension, which gives detailed information on the ramification phenomena of the extension. In mathematics, the ramification theory of valuations studies the set of extensions of a valuation v of a field K to an extension L of K. It is a generalization of the ramification theory of Dedekind domains. The structure of the set of extensions is known better when L/K is Galois.
Ramification (mathematics)In geometry, ramification is 'branching out', in the way that the square root function, for complex numbers, can be seen to have two branches differing in sign. The term is also used from the opposite perspective (branches coming together) as when a covering map degenerates at a point of a space, with some collapsing of the fibers of the mapping. Branch point In complex analysis, the basic model can be taken as the z → zn mapping in the complex plane, near z = 0.
Emil ArtinEmil Artin (ˈaʁtiːn; March 3, 1898 – December 20, 1962) was an Austrian mathematician of Armenian descent. Artin was one of the leading mathematicians of the twentieth century. He is best known for his work on algebraic number theory, contributing largely to class field theory and a new construction of L-functions. He also contributed to the pure theories of rings, groups and fields. Along with Emmy Noether, he is considered the founder of modern abstract algebra.
Modularity theoremThe modularity theorem (formerly called the Taniyama–Shimura conjecture, Taniyama-Weil conjecture or modularity conjecture for elliptic curves) states that elliptic curves over the field of rational numbers are related to modular forms. Andrew Wiles proved the modularity theorem for semistable elliptic curves, which was enough to imply Fermat's Last Theorem. Later, a series of papers by Wiles's former students Brian Conrad, Fred Diamond and Richard Taylor, culminating in a joint paper with Christophe Breuil, extended Wiles's techniques to prove the full modularity theorem in 2001.