Potential theoryIn mathematics and mathematical physics, potential theory is the study of harmonic functions. The term "potential theory" was coined in 19th-century physics when it was realized that two fundamental forces of nature known at the time, namely gravity and the electrostatic force, could be modeled using functions called the gravitational potential and electrostatic potential, both of which satisfy Poisson's equation—or in the vacuum, Laplace's equation.
Poincaré metricIn mathematics, the Poincaré metric, named after Henri Poincaré, is the metric tensor describing a two-dimensional surface of constant negative curvature. It is the natural metric commonly used in a variety of calculations in hyperbolic geometry or Riemann surfaces. There are three equivalent representations commonly used in two-dimensional hyperbolic geometry. One is the Poincaré half-plane model, defining a model of hyperbolic space on the upper half-plane. The Poincaré disk model defines a model for hyperbolic space on the unit disk.
Bifurcation theoryBifurcation theory is the mathematical study of changes in the qualitative or topological structure of a given family of curves, such as the integral curves of a family of vector fields, and the solutions of a family of differential equations. Most commonly applied to the mathematical study of dynamical systems, a bifurcation occurs when a small smooth change made to the parameter values (the bifurcation parameters) of a system causes a sudden 'qualitative' or topological change in its behavior.
Science and HypothesisScience and Hypothesis (La Science et l'Hypothèse) is a book by French mathematician Henri Poincaré, first published in 1902. Aimed at a non-specialist readership, it deals with mathematics, space, physics and nature. It puts forward the theses that absolute truth in science is unattainable, and that many commonly held beliefs of scientists are held as convenient conventions rather than because they are more valid than the alternatives.
Hairy ball theoremThe hairy ball theorem of algebraic topology (sometimes called the hedgehog theorem in Europe) states that there is no nonvanishing continuous tangent vector field on even-dimensional n-spheres. For the ordinary sphere, or 2‐sphere, if f is a continuous function that assigns a vector in R3 to every point p on a sphere such that f(p) is always tangent to the sphere at p, then there is at least one pole, a point where the field vanishes (a p such that f(p) = 0).
Hurewicz theoremIn mathematics, the Hurewicz theorem is a basic result of algebraic topology, connecting homotopy theory with homology theory via a map known as the Hurewicz homomorphism. The theorem is named after Witold Hurewicz, and generalizes earlier results of Henri Poincaré. The Hurewicz theorems are a key link between homotopy groups and homology groups. For any path-connected space X and positive integer n there exists a group homomorphism called the Hurewicz homomorphism, from the n-th homotopy group to the n-th homology group (with integer coefficients).
ConventionalismConventionalism is the philosophical attitude that fundamental principles of a certain kind are grounded on (explicit or implicit) agreements in society, rather than on external reality. Unspoken rules play a key role in the philosophy's structure. Although this attitude is commonly held with respect to the rules of grammar, its application to the propositions of ethics, law, science, biology, mathematics, and logic is more controversial. The debate on linguistic conventionalism goes back to Plato's Cratylus and the philosophy of Kumārila Bhaṭṭa.
International Congress of MathematiciansThe International Congress of Mathematicians (ICM) is the largest conference for the topic of mathematics. It meets once every four years, hosted by the International Mathematical Union (IMU). The Fields Medals, the IMU Abacus Medal (known before 2022 as the Nevanlinna Prize), the Gauss Prize, and the Chern Medal are awarded during the congress's opening ceremony. Each congress is memorialized by a printed set of Proceedings recording academic papers based on invited talks intended to be relevant to current topics of general interest.
Euler's three-body problemIn physics and astronomy, Euler's three-body problem is to solve for the motion of a particle that is acted upon by the gravitational field of two other point masses that are fixed in space. This problem is exactly solvable, and yields an approximate solution for particles moving in the gravitational fields of prolate and oblate spheroids. This problem is named after Leonhard Euler, who discussed it in memoirs published in 1760.
Analysis Situs (paper)"Analysis Situs" is a seminal mathematics paper that Henri Poincaré published in 1895. Poincaré published five supplements to the paper between 1899 and 1904. These papers provided the first systematic treatment of topology and revolutionized the subject by using algebraic structures to distinguish between non-homeomorphic topological spaces, founding the field of algebraic topology.