Concepts associés (40)
Théorie du potentiel
La théorie du potentiel est une branche des mathématiques qui s'est développée à partir de la notion physique de potentiel newtonien introduite par Poisson pour les besoins de la mécanique newtonienne. Elle concerne l'étude de l'opérateur laplacien et notamment des fonctions harmoniques et sous-harmoniques. Dans le plan complexe par exemple, cette théorie commence par l'étude de la fonction potentiel et de son énergie définies de la manière suivante : Soit une mesure de Borel finie à support compact dans .
Métrique de Poincaré
En mathématiques, et plus précisément en géométrie différentielle, la métrique de Poincaré, due à Henri Poincaré, est le tenseur métrique décrivant une surface de courbure négative constante. C'est la métrique naturelle utilisée pour des calculs en géométrie hyperbolique ou sur des surfaces de Riemann.
Théorie des bifurcations
La théorie des bifurcations, en mathématiques et en physique est l'étude de certains aspects des systèmes dynamiques. Une bifurcation intervient lorsqu'un petit changement d'un paramètre physique produit un changement majeur dans l'organisation du système. Des exemples classiques d'une bifurcation en sciences pures sont par exemple les rythmes circadiens de populations animales en biologie théorique et les solutions de météo en mathématique et physique non linéaire, en sciences de l'ingénieur il y a aussi le flambage d'une poutre élastique (l'expérience peut être faite avec une règle d'écolier) ou les transitions de phase de matériaux (température critique de bifurcation, concentration critique).
La Science et l'Hypothèse
La Science et l'Hypothèse est un ouvrage destiné au grand public dans lequel le mathématicien Henri Poincaré fait le point sur ce qu'il faut attendre ou non des sciences concernant les quatre sujets suivants : les mathématiques ; les caractéristiques de l'espace (y compris en géométrie non euclidienne) ; les connaissances physiques (mécanique classique, relativité des mouvements, énergie, thermodynamique) ; la nature (hypothèses en physique, rôle des probabilités, optique, électricité et électrodynamique, fi
Théorème de la boule chevelue
En mathématiques, le théorème de la boule chevelue est un résultat de topologie différentielle. Il s'applique à une sphère supportant en chaque point un vecteur, imaginé comme un cheveu, tangent à la surface. Il affirme que la fonction associant à chaque point de la sphère le vecteur admet au moins un point de discontinuité, ce qui revient à dire que la coiffure contient un épi, ou qu'il y a des cheveux nuls, c'est-à-dire de la calvitie. De manière plus rigoureuse, un champ de vecteurs continu sur une sphère de dimension paire s'annule en au moins un point.
Théorème d'Hurewicz
En topologie algébrique, le cas le plus simple du théorème d'Hurewicz – attribué à Witold Hurewicz – est une description du premier groupe d'homologie singulière d'un espace topologique connexe par arcs à l'aide de son groupe fondamental. Le groupe fondamental, en un point x, d'un espace X, est défini comme l'ensemble des classes d'homotopie de lacets de X en x, muni de la loi de concaténation des lacets. Il est noté π(X, x).
Conventionnalisme
Le conventionnalisme est une doctrine stipulant une séparation fondamentale entre les données de l'intuition et des sens, et les constructions intellectuelles permettant de fonder les théories scientifiques ou mathématiques. Cette notion a été développée notamment par Edouard Le Roy, Pierre Duhem et Henri Poincaré, sous des formes assez différentes, à la frontière du et du (bien qu’aucun de ces auteurs n'ait employé le terme de « conventionnalisme »). Elle trouve son origine profonde dans la séparation kantienne entre intuition et concept.
Congrès international des mathématiciens
vignette|Un timbre commémoratif allemand du Congrès international des mathématiciens lors de l'édition 1998 à Berlin. Le Congrès international des mathématiciens (ICM, International Congress of Mathematicians en anglais) est une manifestation organisée tous les quatre ans par l'Union mathématique internationale. Le premier s’est tenu à Zurich en 1897. Le congrès de 1998 à Berlin a rassemblé plus de . Le programme consiste principalement en des conférences données par d'éminents mathématiciens du monde entier, sélectionnés par les organisateurs du congrès.
Euler's three-body problem
In physics and astronomy, Euler's three-body problem is to solve for the motion of a particle that is acted upon by the gravitational field of two other point masses that are fixed in space. This problem is exactly solvable, and yields an approximate solution for particles moving in the gravitational fields of prolate and oblate spheroids. This problem is named after Leonhard Euler, who discussed it in memoirs published in 1760.
Analysis situs (article)
Analysis Situs est un article de référence sur les mathématiques publié par Henri Poincaré en 1895. Poincaré en a publié cinq compléments entre 1899 et 1904. Ces articles ont fourni le premier traitement systématique de la topologie et ont révolutionné le sujet en utilisant des structures algébriques pour distinguer les espaces topologiques non homéomorphes, fondant ainsi le domaine de la topologie algébrique.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.