In mathematics, the Jacobian variety J(C) of a non-singular algebraic curve C of genus g is the moduli space of degree 0 line bundles. It is the connected component of the identity in the Picard group of C, hence an abelian variety.
The Jacobian variety is named after Carl Gustav Jacobi, who proved the complete version of the Abel–Jacobi theorem, making the injectivity statement of Niels Abel into an isomorphism. It is a principally polarized abelian variety, of dimension g, and hence, over the complex numbers, it is a complex torus. If p is a point of C, then the curve C can be mapped to a subvariety of J with the given point p mapping to the identity of J, and C generates J as a group.
Over the complex numbers, the Jacobian variety can be realized as the quotient space V/L, where V is the dual of the vector space of all global holomorphic differentials on C and L is the lattice of all elements of V of the form
where γ is a closed path in C. In other words,
with embedded in via the above map. This can be done explicitly with the use of theta functions.
The Jacobian of a curve over an arbitrary field was constructed by as part of his proof of the Riemann hypothesis for curves over a finite field.
The Abel–Jacobi theorem states that the torus thus built is a variety, the classical Jacobian of a curve, that indeed parametrizes the degree 0 line bundles, that is, it can be identified with its Picard variety of degree 0 divisors modulo linear equivalence.
As a group, the Jacobian variety of a curve is isomorphic to the quotient of the group of divisors of degree zero by the subgroup of principal divisors, i.e., divisors of rational functions. This holds for fields that are not algebraically closed, provided one considers divisors and functions defined over that field.
Torelli's theorem states that a complex curve is determined by its Jacobian (with its polarization).
The Schottky problem asks which principally polarized abelian varieties are the Jacobians of curves.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, the Picard group of a ringed space X, denoted by Pic(X), is the group of isomorphism classes of invertible sheaves (or line bundles) on X, with the group operation being tensor product. This construction is a global version of the construction of the divisor class group, or ideal class group, and is much used in algebraic geometry and the theory of complex manifolds. Alternatively, the Picard group can be defined as the sheaf cohomology group For integral schemes the Picard group is isomorphic to the class group of Cartier divisors.
In mathematics, a complex torus is a particular kind of complex manifold M whose underlying smooth manifold is a torus in the usual sense (i.e. the cartesian product of some number N circles). Here N must be the even number 2n, where n is the complex dimension of M. All such complex structures can be obtained as follows: take a lattice Λ in a vector space V isomorphic to Cn considered as real vector space; then the quotient group is a compact complex manifold. All complex tori, up to isomorphism, are obtained in this way.
In mathematics, particularly in algebraic geometry, complex analysis and algebraic number theory, an abelian variety is a projective algebraic variety that is also an algebraic group, i.e., has a group law that can be defined by regular functions. Abelian varieties are at the same time among the most studied objects in algebraic geometry and indispensable tools for much research on other topics in algebraic geometry and number theory. An abelian variety can be defined by equations having coefficients in any field; the variety is then said to be defined over that field.
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
This course is aimed to give students an introduction to the theory of algebraic curves, with an emphasis on the interplay between the arithmetic and the geometry of global fields. One of the principl
The goal of this course is to treat selected topics in complex analysis. We will mostly focus on holomorphic functions in one variable. At the end we will also discuss holomorphic functions in several
We use birational geometry to show that the existence of rational points on proper rationally connected varieties over fields of characteristic 0 is a consequence of the existence of rational points on terminal Fano varieties. We discuss several consequenc ...
Abelian varieties are fascinating objects, combining the fields of geometry and arithmetic. While the interest in abelian varieties has long time been of purely theoretic nature, they saw their first real-world application in cryptography in the mid 1980's ...
In this paper, we prove a strengthening of the generic vanishing result in characteristic p > 0 given in Hacon and Patakfalvi (Am J Math 138(4):963-998, 2016). As a consequence of this result, we show that irreducible Theta divisors are strongly F-regular ...