In mathematics, especially in the area of abstract algebra known as ring theory, a free algebra is the noncommutative analogue of a polynomial ring since its elements may be described as "polynomials" with non-commuting variables. Likewise, the polynomial ring may be regarded as a free commutative algebra. For R a commutative ring, the free (associative, unital) algebra on n indeterminates {X1,...,Xn} is the free R-module with a basis consisting of all words over the alphabet {X1,...,Xn} (including the empty word, which is the unit of the free algebra). This R-module becomes an R-algebra by defining a multiplication as follows: the product of two basis elements is the concatenation of the corresponding words: and the product of two arbitrary R-module elements is thus uniquely determined (because the multiplication in an R-algebra must be R-bilinear). This R-algebra is denoted R⟨X1,...,Xn⟩. This construction can easily be generalized to an arbitrary set X of indeterminates. In short, for an arbitrary set , the free (associative, unital) R-algebra on X is with the R-bilinear multiplication that is concatenation on words, where X* denotes the free monoid on X (i.e. words on the letters Xi), denotes the external direct sum, and Rw denotes the free R-module on 1 element, the word w. For example, in R⟨X1,X2,X3,X4⟩, for scalars α, β, γ, δ ∈ R, a concrete example of a product of two elements is The non-commutative polynomial ring may be identified with the monoid ring over R of the free monoid of all finite words in the Xi. Since the words over the alphabet {X1, ...,Xn} form a basis of R⟨X1,...,Xn⟩, it is clear that any element of R⟨X1, ...,Xn⟩ can be written uniquely in the form: where are elements of R and all but finitely many of these elements are zero. This explains why the elements of R⟨X1,...,Xn⟩ are often denoted as "non-commutative polynomials" in the "variables" (or "indeterminates") X1,...,Xn; the elements are said to be "coefficients" of these polynomials, and the R-algebra R⟨X1,...

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (3)
MATH-310: Algebra
This is an introduction to modern algebra: groups, rings and fields.
MATH-334: Representation theory
Study the basics of representation theory of groups and associative algebras.
MATH-506: Topology IV.b - cohomology rings
Singular cohomology is defined by dualizing the singular chain complex for spaces. We will study its basic properties, see how it acquires a multiplicative structure and becomes a graded commutative a
Related lectures (28)
Schur's Lemma and Representations
Explores Schur's lemma and its applications in representations of an associative algebra over an algebraically closed field.
Rings and Modules: Color Codes and Homological Algebra
Covers rings and modules, emphasizing color codes and homological algebra concepts.
Tensor Products of Modules
Covers tensor algebras, symmetric and exterior algebras, and tensor products of modules.
Show more
Related publications (12)

Double Quasi-Poisson Algebras are Pre-Calabi-Yau

David Fernandez

In this article, we prove that double quasi-Poisson algebras, which are noncommutative analogues of quasi-Poisson manifolds, naturally give rise to pre-Calabi-Yau algebras. This extends one of the main results in [11], where a correspondence between certai ...
2022

The Hochschild complex of a twisting cochain

Kathryn Hess Bellwald

Given any twisting cochain t:C→A , where C is a connected, coaugmented chain coalgebra and A is an augmented chain algebra over an arbitrary commutative ring R, we construct a twisted extension of chain complexes Full-size image (1 K) of which both the wel ...
Elsevier2016

The monoid algebra of all relations on a finite set

Jacques Thévenaz, Serge Bouc

We classify all the simple modules for the algebra of relations on a finite set, give their dimension, and find the dimension of the Jacobson radical of the algebra. ...
2015
Show more
Related people (1)
Related concepts (16)
Forgetful functor
In mathematics, in the area of , a forgetful functor (also known as a stripping functor) 'forgets' or drops some or all of the input's structure or properties 'before' mapping to the output. For an algebraic structure of a given signature, this may be expressed by curtailing the signature: the new signature is an edited form of the old one. If the signature is left as an empty list, the functor is simply to take the underlying set of a structure.
Noncommutative ring
In mathematics, a noncommutative ring is a ring whose multiplication is not commutative; that is, there exist a and b in the ring such that ab and ba are different. Equivalently, a noncommutative ring is a ring that is not a commutative ring. Noncommutative algebra is the part of ring theory devoted to study of properties of the noncommutative rings, including the properties that apply also to commutative rings. Sometimes the term noncommutative ring is used instead of ring to refer to an unspecified ring which is not necessarily commutative, and hence may be commutative.
Free object
In mathematics, the idea of a free object is one of the basic concepts of abstract algebra. Informally, a free object over a set A can be thought of as being a "generic" algebraic structure over A: the only equations that hold between elements of the free object are those that follow from the defining axioms of the algebraic structure. Examples include free groups, tensor algebras, or free lattices. The concept is a part of universal algebra, in the sense that it relates to all types of algebraic structure (with finitary operations).
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.