Summary
In mathematics, especially in the area of abstract algebra known as ring theory, a free algebra is the noncommutative analogue of a polynomial ring since its elements may be described as "polynomials" with non-commuting variables. Likewise, the polynomial ring may be regarded as a free commutative algebra. For R a commutative ring, the free (associative, unital) algebra on n indeterminates {X1,...,Xn} is the free R-module with a basis consisting of all words over the alphabet {X1,...,Xn} (including the empty word, which is the unit of the free algebra). This R-module becomes an R-algebra by defining a multiplication as follows: the product of two basis elements is the concatenation of the corresponding words: and the product of two arbitrary R-module elements is thus uniquely determined (because the multiplication in an R-algebra must be R-bilinear). This R-algebra is denoted R⟨X1,...,Xn⟩. This construction can easily be generalized to an arbitrary set X of indeterminates. In short, for an arbitrary set , the free (associative, unital) R-algebra on X is with the R-bilinear multiplication that is concatenation on words, where X* denotes the free monoid on X (i.e. words on the letters Xi), denotes the external direct sum, and Rw denotes the free R-module on 1 element, the word w. For example, in R⟨X1,X2,X3,X4⟩, for scalars α, β, γ, δ ∈ R, a concrete example of a product of two elements is The non-commutative polynomial ring may be identified with the monoid ring over R of the free monoid of all finite words in the Xi. Since the words over the alphabet {X1, ...,Xn} form a basis of R⟨X1,...,Xn⟩, it is clear that any element of R⟨X1, ...,Xn⟩ can be written uniquely in the form: where are elements of R and all but finitely many of these elements are zero. This explains why the elements of R⟨X1,...,Xn⟩ are often denoted as "non-commutative polynomials" in the "variables" (or "indeterminates") X1,...,Xn; the elements are said to be "coefficients" of these polynomials, and the R-algebra R⟨X1,...
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.