Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
In mathematics, especially in the area of abstract algebra known as ring theory, a free algebra is the noncommutative analogue of a polynomial ring since its elements may be described as "polynomials" with non-commuting variables. Likewise, the polynomial ring may be regarded as a free commutative algebra. For R a commutative ring, the free (associative, unital) algebra on n indeterminates {X1,...,Xn} is the free R-module with a basis consisting of all words over the alphabet {X1,...,Xn} (including the empty word, which is the unit of the free algebra). This R-module becomes an R-algebra by defining a multiplication as follows: the product of two basis elements is the concatenation of the corresponding words: and the product of two arbitrary R-module elements is thus uniquely determined (because the multiplication in an R-algebra must be R-bilinear). This R-algebra is denoted R⟨X1,...,Xn⟩. This construction can easily be generalized to an arbitrary set X of indeterminates. In short, for an arbitrary set , the free (associative, unital) R-algebra on X is with the R-bilinear multiplication that is concatenation on words, where X* denotes the free monoid on X (i.e. words on the letters Xi), denotes the external direct sum, and Rw denotes the free R-module on 1 element, the word w. For example, in R⟨X1,X2,X3,X4⟩, for scalars α, β, γ, δ ∈ R, a concrete example of a product of two elements is The non-commutative polynomial ring may be identified with the monoid ring over R of the free monoid of all finite words in the Xi. Since the words over the alphabet {X1, ...,Xn} form a basis of R⟨X1,...,Xn⟩, it is clear that any element of R⟨X1, ...,Xn⟩ can be written uniquely in the form: where are elements of R and all but finitely many of these elements are zero. This explains why the elements of R⟨X1,...,Xn⟩ are often denoted as "non-commutative polynomials" in the "variables" (or "indeterminates") X1,...,Xn; the elements are said to be "coefficients" of these polynomials, and the R-algebra R⟨X1,...
,