Advice (complexity)In computational complexity theory, an advice string is an extra input to a Turing machine that is allowed to depend on the length n of the input, but not on the input itself. A decision problem is in the complexity class P/f(n) if there is a polynomial time Turing machine M with the following property: for any n, there is an advice string A of length f(n) such that, for any input x of length n, the machine M correctly decides the problem on the input x, given x and A.
Graph isomorphism problemThe graph isomorphism problem is the computational problem of determining whether two finite graphs are isomorphic. The problem is not known to be solvable in polynomial time nor to be NP-complete, and therefore may be in the computational complexity class NP-intermediate. It is known that the graph isomorphism problem is in the low hierarchy of class NP, which implies that it is not NP-complete unless the polynomial time hierarchy collapses to its second level.
Promise problemIn computational complexity theory, a promise problem is a generalization of a decision problem where the input is promised to belong to a particular subset of all possible inputs. Unlike decision problems, the yes instances (the inputs for which an algorithm must return yes) and no instances do not exhaust the set of all inputs. Intuitively, the algorithm has been promised that the input does indeed belong to set of yes instances or no instances. There may be inputs which are neither yes nor no.
Monte Carlo algorithmIn computing, a Monte Carlo algorithm is a randomized algorithm whose output may be incorrect with a certain (typically small) probability. Two examples of such algorithms are the Karger–Stein algorithm and the Monte Carlo algorithm for minimum feedback arc set. The name refers to the Monte Carlo casino in the Principality of Monaco, which is well-known around the world as an icon of gambling. The term "Monte Carlo" was first introduced in 1947 by Nicholas Metropolis.
Savitch's theoremIn computational complexity theory, Savitch's theorem, proved by Walter Savitch in 1970, gives a relationship between deterministic and non-deterministic space complexity. It states that for any function , In other words, if a nondeterministic Turing machine can solve a problem using space, a deterministic Turing machine can solve the same problem in the square of that space bound. Although it seems that nondeterminism may produce exponential gains in time (as formalized in the unproven exponential time hypothesis), Savitch's theorem shows that it has a markedly more limited effect on space requirements.
Exponential hierarchyIn computational complexity theory, the exponential hierarchy is a hierarchy of complexity classes that is an exponential time analogue of the polynomial hierarchy. As elsewhere in complexity theory, “exponential” is used in two different meanings (linear exponential bounds for a constant c, and full exponential bounds ), leading to two versions of the exponential hierarchy. This hierarchy is sometimes also referred to as the weak exponential hierarchy, to differentiate it from the strong exponential hierarchy.
Nondeterministic Turing machineIn theoretical computer science, a nondeterministic Turing machine (NTM) is a theoretical model of computation whose governing rules specify more than one possible action when in some given situations. That is, an NTM's next state is not completely determined by its action and the current symbol it sees, unlike a deterministic Turing machine. NTMs are sometimes used in thought experiments to examine the abilities and limits of computers.
Space hierarchy theoremIn computational complexity theory, the space hierarchy theorems are separation results that show that both deterministic and nondeterministic machines can solve more problems in (asymptotically) more space, subject to certain conditions. For example, a deterministic Turing machine can solve more decision problems in space n log n than in space n. The somewhat weaker analogous theorems for time are the time hierarchy theorems.
Recursive languageIn mathematics, logic and computer science, a formal language (a set of finite sequences of symbols taken from a fixed alphabet) is called recursive if it is a recursive subset of the set of all possible finite sequences over the alphabet of the language. Equivalently, a formal language is recursive if there exists a Turing machine that, when given a finite sequence of symbols as input, always halts and accepts it if it belongs to the language and halts and rejects it otherwise.
Counting problem (complexity)In computational complexity theory and computability theory, a counting problem is a type of computational problem. If R is a search problem then is the corresponding counting function and denotes the corresponding decision problem. Note that cR is a search problem while #R is a decision problem, however cR can be C Cook-reduced to #R (for appropriate C) using a binary search (the reason #R is defined the way it is, rather than being the graph of cR, is to make this binary search possible).