Concept

Dodecagon

In geometry, a dodecagon, or 12-gon, is any twelve-sided polygon. A regular dodecagon is a figure with sides of the same length and internal angles of the same size. It has twelve lines of reflective symmetry and rotational symmetry of order 12. A regular dodecagon is represented by the Schläfli symbol {12} and can be constructed as a truncated hexagon, t{6}, or a twice-truncated triangle, tt{3}. The internal angle at each vertex of a regular dodecagon is 150°. The area of a regular dodecagon of side length a is given by: And in terms of the apothem r (see also inscribed figure), the area is: In terms of the circumradius R, the area is: The span S of the dodecagon is the distance between two parallel sides and is equal to twice the apothem. A simple formula for area (given side length and span) is: This can be verified with the trigonometric relationship: The perimeter of a regular dodecagon in terms of circumradius is: The perimeter in terms of apothem is: This coefficient is double the coefficient found in the apothem equation for area. As 12 = 22 × 3, regular dodecagon is constructible using compass-and-straightedge construction: Coxeter states that every zonogon (a 2m-gon whose opposite sides are parallel and of equal length) can be dissected into m(m-1)/2 parallelograms. In particular this is true for regular polygons with evenly many sides, in which case the parallelograms are all rhombi. For the regular dodecagon, m=6, and it can be divided into 15: 3 squares, 6 wide 30° rhombs and 6 narrow 15° rhombs. This decomposition is based on a Petrie polygon projection of a 6-cube, with 15 of 240 faces. The sequence OEIS sequence defines the number of solutions as 908, including up to 12-fold rotations and chiral forms in reflection. One of the ways the mathematical manipulative pattern blocks are used is in creating a number of different dodecagons. They are related to the rhombic dissections, with 3 60° rhombi merged into hexagons, half-hexagon trapezoids, or divided into 2 equilateral triangles.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.