Solenoid (mathematics)This page discusses a class of topological groups. For the wrapped loop of wire, see Solenoid. In mathematics, a solenoid is a compact connected topological space (i.e. a continuum) that may be obtained as the inverse limit of an inverse system of topological groups and continuous homomorphisms where each is a circle and fi is the map that uniformly wraps the circle for times () around the circle . This construction can be carried out geometrically in the three-dimensional Euclidean space R3.
Ernst KummerErnst Eduard Kummer (29 January 1810 – 14 May 1893) was a German mathematician. Skilled in applied mathematics, Kummer trained German army officers in ballistics; afterwards, he taught for 10 years in a gymnasium, the German equivalent of high school, where he inspired the mathematical career of Leopold Kronecker. Kummer was born in Sorau, Brandenburg (then part of Prussia). He was awarded a PhD from the University of Halle in 1831 for writing a prize-winning mathematical essay (De cosinuum et sinuum potestatibus secundum cosinus et sinus arcuum multiplicium evolvendis), which was published a year later.
Locally compact fieldIn algebra, a locally compact field is a topological field whose topology forms a locally compact Hausdorff space. These kinds of fields were originally introduced in p-adic analysis since the fields are locally compact topological spaces constructed from the norm on . The topology (and metric space structure) is essential because it allows one to construct analogues of algebraic number fields in the p-adic context. One of the useful structure theorems for vector spaces over locally compact fields is that the finite dimensional vector spaces have only an equivalence class of norm: the sup norm pg.
Fractional idealIn mathematics, in particular commutative algebra, the concept of fractional ideal is introduced in the context of integral domains and is particularly fruitful in the study of Dedekind domains. In some sense, fractional ideals of an integral domain are like ideals where denominators are allowed. In contexts where fractional ideals and ordinary ring ideals are both under discussion, the latter are sometimes termed integral ideals for clarity. Let be an integral domain, and let be its field of fractions.
I-adic topologyIn commutative algebra, the mathematical study of commutative rings, adic topologies are a family of topologies on the underlying set of a module, generalizing the p-adic topologies on the integers. Let R be a commutative ring and M an R-module. Then each ideal a of R determines a topology on M called the a-adic topology, characterized by the pseudometric The family is a basis for this topology. With respect to the topology, the module operations of addition and scalar multiplication are continuous, so that M becomes a topological module.
Helmut HasseHelmut Hasse (ˈhasə; 25 August 1898 – 26 December 1979) was a German mathematician working in algebraic number theory, known for fundamental contributions to class field theory, the application of p-adic numbers to local class field theory and diophantine geometry (Hasse principle), and to local zeta functions. Hasse was born in Kassel, Province of Hesse-Nassau, the son of Judge Paul Reinhard Hasse, also written Haße (12 April 1868 – 1 June 1940, son of Friedrich Ernst Hasse and his wife Anna Von Reinhard) and his wife Margarethe Louise Adolphine Quentin (born 5 July 1872 in Milwaukee, daughter of retail toy merchant Adolph Quentin (b.
Discrete valuationIn mathematics, a discrete valuation is an integer valuation on a field K; that is, a function: satisfying the conditions: for all . Note that often the trivial valuation which takes on only the values is explicitly excluded. A field with a non-trivial discrete valuation is called a discrete valuation field. To every field with discrete valuation we can associate the subring of , which is a discrete valuation ring. Conversely, the valuation on a discrete valuation ring can be extended in a unique way to a discrete valuation on the quotient field ; the associated discrete valuation ring is just .
Tensor product of fieldsIn mathematics, the tensor product of two fields is their tensor product as algebras over a common subfield. If no subfield is explicitly specified, the two fields must have the same characteristic and the common subfield is their prime subfield. The tensor product of two fields is sometimes a field, and often a direct product of fields; In some cases, it can contain non-zero nilpotent elements. The tensor product of two fields expresses in a single structure the different way to embed the two fields in a common extension field.