Solénoïde (mathématiques)Cette page traite d'une classe de groupe topologique. Pour bobine électromagnétique, voir Solénoïde. En mathématiques, pour un nombre premier donné p, le solénoïde p-adique est le groupe topologique défini comme la limite projective du système où i parcourt les entiers naturels, et chaque Si est un cercle, et qi enroule le cercle p fois autour du cercle . Le solénoïde est l'exemple standard d'un espace ayant un mauvais comportement vis-à-vis des diverses théories homologiques, contrairement aux complexes simpliciaux.
Ernst KummerErnst Eduard Kummer (1810-1893) est un mathématicien allemand. À l'âge de 3 ans, Kummer perd son père, un médecin. Il fait des études à l'université de Halle, d'abord en théologie puis en mathématiques. Il devient docteur en mathématique en 1831. Il enseigne pendant 10 ans au lycée de Liegnitz, où il a Leopold Kronecker et Ferdinand Joachimsthal comme élèves. Nommé en 1840 professeur à l'université de Breslau grâce à l'appui de Jacobi et de Dirichlet, il reprend la chaire de ce dernier à l'université de Berlin en 1855.
Locally compact fieldIn algebra, a locally compact field is a topological field whose topology forms a locally compact Hausdorff space. These kinds of fields were originally introduced in p-adic analysis since the fields are locally compact topological spaces constructed from the norm on . The topology (and metric space structure) is essential because it allows one to construct analogues of algebraic number fields in the p-adic context. One of the useful structure theorems for vector spaces over locally compact fields is that the finite dimensional vector spaces have only an equivalence class of norm: the sup norm pg.
Idéal fractionnairevignette|Richard Dedekind donne en 1876 la définition d'idéal fractionnaire. En mathématiques, et plus précisément en théorie des anneaux, un idéal fractionnaire est une généralisation de la définition d'un idéal. Ce concept doit son origine à la théorie algébrique des nombres. Pour résoudre certaines équations diophantiennes, cette théorie utilise des anneaux d'entiers généralisant celui des entiers relatifs.
I-adic topologyIn commutative algebra, the mathematical study of commutative rings, adic topologies are a family of topologies on the underlying set of a module, generalizing the p-adic topologies on the integers. Let R be a commutative ring and M an R-module. Then each ideal a of R determines a topology on M called the a-adic topology, characterized by the pseudometric The family is a basis for this topology. With respect to the topology, the module operations of addition and scalar multiplication are continuous, so that M becomes a topological module.
Helmut HasseHelmut Hasse (1898-1979) est un mathématicien allemand. Il est un des plus grands algébristes allemands de son époque, connu notamment pour ses travaux sur la théorie des nombres. Hasse est le fils du juge Paul Reinhard Hasse et de Margaret Quentin, née à Milwaukee, mais élevée à Kassel. Il est scolarisé à Kassel et à Berlin-Wilmersdorf, après que sa famille ait déménagé à Berlin en 1913.
Discrete valuationIn mathematics, a discrete valuation is an integer valuation on a field K; that is, a function: satisfying the conditions: for all . Note that often the trivial valuation which takes on only the values is explicitly excluded. A field with a non-trivial discrete valuation is called a discrete valuation field. To every field with discrete valuation we can associate the subring of , which is a discrete valuation ring. Conversely, the valuation on a discrete valuation ring can be extended in a unique way to a discrete valuation on the quotient field ; the associated discrete valuation ring is just .
Tensor product of fieldsIn mathematics, the tensor product of two fields is their tensor product as algebras over a common subfield. If no subfield is explicitly specified, the two fields must have the same characteristic and the common subfield is their prime subfield. The tensor product of two fields is sometimes a field, and often a direct product of fields; In some cases, it can contain non-zero nilpotent elements. The tensor product of two fields expresses in a single structure the different way to embed the two fields in a common extension field.