Axis–angle representationIn mathematics, the axis–angle representation parameterizes a rotation in a three-dimensional Euclidean space by two quantities: a unit vector e indicating the direction (geometry) of an axis of rotation, and an angle of rotation θ describing the magnitude and sense (e.g., clockwise) of the rotation about the axis. Only two numbers, not three, are needed to define the direction of a unit vector e rooted at the origin because the magnitude of e is constrained.
ComplexificationIn mathematics, the complexification of a vector space V over the field of real numbers (a "real vector space") yields a vector space V^C over the complex number field, obtained by formally extending the scaling of vectors by real numbers to include their scaling ("multiplication") by complex numbers. Any basis for V (a space over the real numbers) may also serve as a basis for V^C over the complex numbers. Let be a real vector space.
Arthur CayleyArthur Cayley (ˈkeɪli; 16 August 1821 – 26 January 1895) was a prolific British mathematician who worked mostly on algebra. He helped found the modern British school of pure mathematics. As a child, Cayley enjoyed solving complex maths problems for amusement. He entered Trinity College, Cambridge, where he excelled in Greek, French, German, and Italian, as well as mathematics. He worked as a lawyer for 14 years. He postulated what is now known as the Cayley–Hamilton theorem—that every square matrix is a root of its own characteristic polynomial, and verified it for matrices of order 2 and 3.
Quaternion algebraIn mathematics, a quaternion algebra over a field F is a central simple algebra A over F that has dimension 4 over F. Every quaternion algebra becomes a matrix algebra by extending scalars (equivalently, tensoring with a field extension), i.e. for a suitable field extension K of F, is isomorphic to the 2 × 2 matrix algebra over K. The notion of a quaternion algebra can be seen as a generalization of Hamilton's quaternions to an arbitrary base field.
Center (ring theory)In algebra, the center of a ring R is the subring consisting of the elements x such that xy = yx for all elements y in R. It is a commutative ring and is denoted as ; "Z" stands for the German word Zentrum, meaning "center". If R is a ring, then R is an associative algebra over its center. Conversely, if R is an associative algebra over a commutative subring S, then S is a subring of the center of R, and if S happens to be the center of R, then the algebra R is called a central algebra.
Split-biquaternionIn mathematics, a split-biquaternion is a hypercomplex number of the form where w, x, y, and z are split-complex numbers and i, j, and k multiply as in the quaternion group. Since each coefficient w, x, y, z spans two real dimensions, the split-biquaternion is an element of an eight-dimensional vector space. Considering that it carries a multiplication, this vector space is an algebra over the real field, or an algebra over a ring where the split-complex numbers form the ring.
Hyperbolic quaternionIn abstract algebra, the algebra of hyperbolic quaternions is a nonassociative algebra over the real numbers with elements of the form where the squares of i, j, and k are +1 and distinct elements of {i, j, k} multiply with the anti-commutative property. The four-dimensional algebra of hyperbolic quaternions incorporates some of the features of the older and larger algebra of biquaternions. They both contain subalgebras isomorphic to the split-complex number plane.
Ludwig SchläfliLudwig Schläfli (15 January 1814 – 20 March 1895) was a Swiss mathematician, specialising in geometry and complex analysis (at the time called function theory) who was one of the key figures in developing the notion of higher-dimensional spaces. The concept of multidimensionality is pervasive in mathematics, has come to play a pivotal role in physics, and is a common element in science fiction. Ludwig spent most of his life in Switzerland. He was born in Grasswil (now part of Seeberg), his mother's hometown.
Lagrange's four-square theoremLagrange's four-square theorem, also known as Bachet's conjecture, states that every natural number can be represented as a sum of four non-negative integer squares. That is, the squares form an additive basis of order four. where the four numbers are integers. For illustration, 3, 31, and 310 in several ways, can be represented as the sum of four squares as follows: This theorem was proven by Joseph Louis Lagrange in 1770. It is a special case of the Fermat polygonal number theorem.
Gimbal lockGimbal lock is the loss of one degree of freedom in a three-dimensional, three-gimbal mechanism that occurs when the axes of two of the three gimbals are driven into a parallel configuration, "locking" the system into rotation in a degenerate two-dimensional space. The term gimbal-lock can be misleading in the sense that none of the individual gimbals are actually restrained. All three gimbals can still rotate freely about their respective axes of suspension.