Euler's identityIn mathematics, Euler's identity (also known as Euler's equation) is the equality where e is Euler's number, the base of natural logarithms, i is the imaginary unit, which by definition satisfies i2 = −1, and π is pi, the ratio of the circumference of a circle to its diameter. Euler's identity is named after the Swiss mathematician Leonhard Euler. It is a special case of Euler's formula when evaluated for x = π. Euler's identity is considered to be an exemplar of mathematical beauty as it shows a profound connection between the most fundamental numbers in mathematics.
Complex conjugateIn mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, if and are real numbers then the complex conjugate of is The complex conjugate of is often denoted as or . In polar form, if and are real numbers then the conjugate of is This can be shown using Euler's formula. The product of a complex number and its conjugate is a real number: (or in polar coordinates).
SubalgebraIn mathematics, a subalgebra is a subset of an algebra, closed under all its operations, and carrying the induced operations. "Algebra", when referring to a structure, often means a vector space or module equipped with an additional bilinear operation. Algebras in universal algebra are far more general: they are a common generalisation of all algebraic structures. "Subalgebra" can refer to either case. A subalgebra of an algebra over a commutative ring or field is a vector subspace which is closed under the multiplication of vectors.
Split-quaternionIn abstract algebra, the split-quaternions or coquaternions form an algebraic structure introduced by James Cockle in 1849 under the latter name. They form an associative algebra of dimension four over the real numbers. After introduction in the 20th century of coordinate-free definitions of rings and algebras, it was proved that the algebra of split-quaternions is isomorphic to the ring of the 2×2 real matrices.
Hurwitz's theorem (composition algebras)In mathematics, Hurwitz's theorem is a theorem of Adolf Hurwitz (1859–1919), published posthumously in 1923, solving the Hurwitz problem for finite-dimensional unital real non-associative algebras endowed with a positive-definite quadratic form. The theorem states that if the quadratic form defines a homomorphism into the positive real numbers on the non-zero part of the algebra, then the algebra must be isomorphic to the real numbers, the complex numbers, the quaternions, or the octonions.
Scalar (mathematics)A scalar is an element of a field which is used to define a vector space. In linear algebra, real numbers or generally elements of a field are called scalars and relate to vectors in an associated vector space through the operation of scalar multiplication (defined in the vector space), in which a vector can be multiplied by a scalar in the defined way to produce another vector. Generally speaking, a vector space may be defined by using any field instead of real numbers (such as complex numbers).
Central simple algebraIn ring theory and related areas of mathematics a central simple algebra (CSA) over a field K is a finite-dimensional associative K-algebra A which is simple, and for which the center is exactly K. (Note that not every simple algebra is a central simple algebra over its center: for instance, if K is a field of characteristic 0, then the Weyl algebra is a simple algebra with center K, but is not a central simple algebra over K as it has infinite dimension as a K-module.
Frobenius theorem (real division algebras)In mathematics, more specifically in abstract algebra, the Frobenius theorem, proved by Ferdinand Georg Frobenius in 1877, characterizes the finite-dimensional associative division algebras over the real numbers. According to the theorem, every such algebra is isomorphic to one of the following: R (the real numbers) C (the complex numbers) H (the quaternions). These algebras have real dimension 1, 2, and 4, respectively. Of these three algebras, R and C are commutative, but H is not.
Simple ringIn abstract algebra, a branch of mathematics, a simple ring is a non-zero ring that has no two-sided ideal besides the zero ideal and itself. In particular, a commutative ring is a simple ring if and only if it is a field. The center of a simple ring is necessarily a field. It follows that a simple ring is an associative algebra over this field. It is then called a simple algebra over this field. Several references (e.g., Lang (2002) or Bourbaki (2012)) require in addition that a simple ring be left or right Artinian (or equivalently semi-simple).
Hurwitz quaternionIn mathematics, a Hurwitz quaternion (or Hurwitz integer) is a quaternion whose components are either all integers or all half-integers (halves of odd integers; a mixture of integers and half-integers is excluded). The set of all Hurwitz quaternions is That is, either a, b, c, d are all integers, or they are all half-integers. H is closed under quaternion multiplication and addition, which makes it a subring of the ring of all quaternions H. Hurwitz quaternions were introduced by .