Geostatistics is a branch of statistics focusing on spatial or spatiotemporal datasets. Developed originally to predict probability distributions of ore grades for mining operations, it is currently applied in diverse disciplines including petroleum geology, hydrogeology, hydrology, meteorology, oceanography, geochemistry, geometallurgy, geography, forestry, environmental control, landscape ecology, soil science, and agriculture (esp. in precision farming). Geostatistics is applied in varied branches of geography, particularly those involving the spread of diseases (epidemiology), the practice of commerce and military planning (logistics), and the development of efficient spatial networks. Geostatistical algorithms are incorporated in many places, including geographic information systems (GIS).
Geostatistics is intimately related to interpolation methods, but extends far beyond simple interpolation problems. Geostatistical techniques rely on statistical models that are based on random function (or random variable) theory to model the uncertainty associated with spatial estimation and simulation.
A number of simpler interpolation methods/algorithms, such as inverse distance weighting, bilinear interpolation and nearest-neighbor interpolation, were already well known before geostatistics. Geostatistics goes beyond the interpolation problem by considering the studied phenomenon at unknown locations as a set of correlated random variables.
Let Z(x) be the value of the variable of interest at a certain location x. This value is unknown (e.g. temperature, rainfall, piezometric level, geological facies, etc.). Although there exists a value at location x that could be measured, geostatistics considers this value as random since it was not measured, or has not been measured yet. However, the randomness of Z(x) is not complete, but defined by a cumulative distribution function (CDF) that depends on certain information that is known about the value Z(x):
Typically, if the value of Z is known at locations close to x (or in the neighborhood of x) one can constrain the CDF of Z(x) by this neighborhood: if a high spatial continuity is assumed, Z(x) can only have values similar to the ones found in the neighborhood.