Strongly chordal graphIn the mathematical area of graph theory, an undirected graph G is strongly chordal if it is a chordal graph and every cycle of even length (≥ 6) in G has an odd chord, i.e., an edge that connects two vertices that are an odd distance (>1) apart from each other in the cycle. Strongly chordal graphs have a forbidden subgraph characterization as the graphs that do not contain an induced cycle of length greater than three or an n-sun (n ≥ 3) as an induced subgraph. An n-sun is a chordal graph with 2n vertices, partitioned into two subsets U = {u1, u2,.
Permutation graphIn the mathematical field of graph theory, a permutation graph is a graph whose vertices represent the elements of a permutation, and whose edges represent pairs of elements that are reversed by the permutation. Permutation graphs may also be defined geometrically, as the intersection graphs of line segments whose endpoints lie on two parallel lines. Different permutations may give rise to the same permutation graph; a given graph has a unique representation (up to permutation symmetry) if it is prime with respect to the modular decomposition.
MycielskianIn the mathematical area of graph theory, the Mycielskian or Mycielski graph of an undirected graph is a larger graph formed from it by a construction of . The construction preserves the property of being triangle-free but increases the chromatic number; by applying the construction repeatedly to a triangle-free starting graph, Mycielski showed that there exist triangle-free graphs with arbitrarily large chromatic number. Let the n vertices of the given graph G be v1, v2, . . . , vn.
BoxicityIn graph theory, boxicity is a graph invariant, introduced by Fred S. Roberts in 1969. The boxicity of a graph is the minimum dimension in which a given graph can be represented as an intersection graph of axis-parallel boxes. That is, there must exist a one-to-one correspondence between the vertices of the graph and a set of boxes, such that two boxes intersect if and only if there is an edge connecting the corresponding vertices. The figure shows a graph with six vertices, and a representation of this graph as an intersection graph of rectangles (two-dimensional boxes).
Indifference graphIn graph theory, a branch of mathematics, an indifference graph is an undirected graph constructed by assigning a real number to each vertex and connecting two vertices by an edge when their numbers are within one unit of each other. Indifference graphs are also the intersection graphs of sets of unit intervals, or of properly nested intervals (intervals none of which contains any other one). Based on these two types of interval representations, these graphs are also called unit interval graphs or proper interval graphs; they form a subclass of the interval graphs.
Topological graph theoryIn mathematics, topological graph theory is a branch of graph theory. It studies the embedding of graphs in surfaces, spatial embeddings of graphs, and graphs as topological spaces. It also studies immersions of graphs. Embedding a graph in a surface means that we want to draw the graph on a surface, a sphere for example, without two edges intersecting. A basic embedding problem often presented as a mathematical puzzle is the three utilities problem.
Exponential time hypothesisIn computational complexity theory, the exponential time hypothesis is an unproven computational hardness assumption that was formulated by . It states that satisfiability of 3-CNF Boolean formulas cannot be solved in subexponential time, i.e., for all constant , where n is the number of variables in the formula. The exponential time hypothesis, if true, would imply that P ≠ NP, but it is a stronger statement.
Kneser graphIn graph theory, the Kneser graph K(n, k) (alternatively KGn,k) is the graph whose vertices correspond to the k-element subsets of a set of n elements, and where two vertices are adjacent if and only if the two corresponding sets are disjoint. Kneser graphs are named after Martin Kneser, who first investigated them in 1956. The Kneser graph K(n, 1) is the complete graph on n vertices. The Kneser graph K(n, 2) is the complement of the line graph of the complete graph on n vertices.
CocoloringIn graph theory, a cocoloring of a graph G is an assignment of colors to the vertices such that each color class forms an independent set in G or in the complement of G. The cochromatic number z(G) of G is the fewest colors needed in any cocolorings of G. The graphs with cochromatic number 2 are exactly the bipartite graphs, complements of bipartite graphs, and split graphs.
Trivially perfect graphIn graph theory, a trivially perfect graph is a graph with the property that in each of its induced subgraphs the size of the maximum independent set equals the number of maximal cliques. Trivially perfect graphs were first studied by but were named by ; Golumbic writes that "the name was chosen since it is trivial to show that such a graph is perfect." Trivially perfect graphs are also known as comparability graphs of trees, arborescent comparability graphs, and quasi-threshold graphs.