Strongly chordal graphIn the mathematical area of graph theory, an undirected graph G is strongly chordal if it is a chordal graph and every cycle of even length (≥ 6) in G has an odd chord, i.e., an edge that connects two vertices that are an odd distance (>1) apart from each other in the cycle. Strongly chordal graphs have a forbidden subgraph characterization as the graphs that do not contain an induced cycle of length greater than three or an n-sun (n ≥ 3) as an induced subgraph. An n-sun is a chordal graph with 2n vertices, partitioned into two subsets U = {u1, u2,.
Graphe de permutationEn théorie des graphes, un graphe de permutation est un graphe non orienté dont les sommets représentent les éléments d'une permutation, et dont les arêtes relient les paires de sommets qui sont inversés dans la permutation. On peut aussi définir les graphes de permutations de manière géométrique : ce sont les graphes d'intersections de segments dont les extrémités sont sur deux droites parallèles. On définit les graphes de permutation de la manière suivante.
Graphe de MycielskiEn théorie des graphes, les graphes de Mycielski, ou myscielkiens, sont des graphes sans triangles de nombre chromatique élevé, construits par récurrence à partir du graphe formé d'un unique sommet par une transformation appelée elle aussi myscielskien. Ils sont dus au mathématicien Jan Mycielski. Soit un graphe. Le mycielkien de ce graphe noté est le graphe avec où est une copie de et où et . Les graphes de Mycielski sont les graphes définis par la récurrence suivante : est le graphe à une arête, et .
BoxicityIn graph theory, boxicity is a graph invariant, introduced by Fred S. Roberts in 1969. The boxicity of a graph is the minimum dimension in which a given graph can be represented as an intersection graph of axis-parallel boxes. That is, there must exist a one-to-one correspondence between the vertices of the graph and a set of boxes, such that two boxes intersect if and only if there is an edge connecting the corresponding vertices. The figure shows a graph with six vertices, and a representation of this graph as an intersection graph of rectangles (two-dimensional boxes).
Graphe d'intervalles propreUn graphe d'intervalles propre est un graphe d'intervalles possédant une représentation d'intervalles dans laquelle aucun intervalle n'est inclus dans l'autre. Un graphe d'intervalles propre est nécessairement un graphe sans griffe. Soit un graphe possédant une griffe comme sous-graphe induit. On appelle les quatre sommets de la griffe d'intervalles respectives ,, et tels que le sommet soit celui relié aux trois autres et que . Comme la griffe est un graphe induit, , et ne sont pas voisins dans . On a donc .
Théorie topologique des graphesEn mathématiques, la théorie topologique des graphes est une branche de la théorie des graphes . Elle étudie entre autres les plongements de graphes dans des surfaces, les graphiques en tant qu'espaces topologiques ainsi que les immersions de graphes. Un plongement d'un graphe dans une surface donnée, une sphère par exemple, est une façon de dessiner ce graphe sur cette surface sans que deux arêtes se croisent. Un problème fondamental de la théorie topologique des graphes, souvent présenté comme un casse - tête mathématique, est le problème des trois chalets.
Exponential time hypothesisIn computational complexity theory, the exponential time hypothesis is an unproven computational hardness assumption that was formulated by . It states that satisfiability of 3-CNF Boolean formulas cannot be solved in subexponential time, i.e., for all constant , where n is the number of variables in the formula. The exponential time hypothesis, if true, would imply that P ≠ NP, but it is a stronger statement.
Graphe de KneserEn théorie des graphes, les graphes de Kneser forment une famille infinie de graphes. Le graphe de Kneser KGn,k est un graphe simple dont les sommets correspondent aux sous-ensembles à k éléments d'un ensemble à n éléments. Deux sommets sont reliés s'ils correspondent à des sous-ensembles disjoints. Son ordre est donc égal , le nombre de combinaison de k parmi n, et il est régulier de degré . En 1955, le mathématicien Martin Kneser se pose la question suivante : Kneser conjecture que ce n'est pas possible et le publie sous forme d'un exercice.
Cocolorationdroite|vignette|400x400px| Cocoloration avec 3 couleurs (figure en haut à gauche) : une 3-coloration propre de ce graphe est impossible. Le sous-graphe bleu forme une clique (figure en bas à droite), tandis que les sous-graphes rouge et vert forment des cliques du graphe complémentaire. En théorie des graphes, une cocoloration d'un graphe G est une affectation de couleurs aux sommets de telle sorte que chaque classe de couleur forme un ensemble indépendant dans G ou dans le graphe complémentaire de G.
Graphe trivialement parfaitvignette|upright=2| Construction d'un graphe trivialement parfait à partir d'intervalles imbriqués et de la relation d'accessibilité dans un arbre. En théorie des graphes, un graphe trivialement parfait est un graphe qui a la propriété que dans chacun de ses sous-graphes induits, la taille du stable maximal est égale au nombre de cliques maximales. Les graphes trivialement parfaits ont été étudiés pour la première fois par Elliot S.