Androgen insensitivity syndrome (AIS) is a difference in sex development involving hormonal resistance due to androgen receptor dysfunction.
It affects 1 in 20,000 to 64,000 XY (karyotypically male) births. The condition results in the partial or complete inability of cells to respond to androgens. This unresponsiveness can impair or prevent the development of male genitals, as well as impairing or preventing the development of male secondary sexual characteristics at puberty. It does not significantly impair female genital or sexual development. The insensitivity to androgens is therefore clinically significant only when it occurs in genetic males, (i.e. individuals with a Y-chromosome, or more specifically, an SRY gene). Clinical phenotypes in these individuals range from a typical male habitus with mild spermatogenic defect or reduced secondary terminal hair, to a full female habitus, despite the presence of a Y-chromosome.
AIS is divided into three categories that are differentiated by the degree of genital masculinization: complete androgen insensitivity syndrome (CAIS) is indicated when the external genitalia are those of a typical female; mild androgen insensitivity syndrome (MAIS) is indicated when the external genitalia are those of a typical male, and partial androgen insensitivity syndrome (PAIS) is indicated when the external genitalia are partially, but not fully, masculinized. Androgen insensitivity syndrome is the largest single entity that leads to 46,XY undermasculinized genitalia.
Management of AIS is currently limited to symptomatic management; no method is currently available to correct the malfunctioning androgen receptor proteins produced by AR gene mutations. Areas of management include sex assignment, genitoplasty, gonadectomy to reduce tumor risk, hormone replacement therapy, genetic counseling, and psychological counseling.
The human androgen receptor (AR) is a protein encoded by a gene located on the proximal long arm of the X chromosome (locus Xq11-Xq12).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Anabolic steroids, also known as anabolic-androgenic steroids (AAS), are synthetic substances that mimic the effects of testosterone, the male sex hormone. They are used to increase muscle size, strength, and performance and are commonly associated with athletic performance enhancement and bodybuilding. Anabolic steroids are classified as Schedule III controlled substances in many countries due to their potential for abuse and adverse health effects. Health risks can be produced by long-term use or excessive doses of AAS.
5α-Reductase 2 deficiency (5αR2D) is an autosomal recessive condition caused by a mutation in SRD5A2, a gene encoding the enzyme 5α-reductase type 2 (5αR2). The condition is rare, affects only genetic males, and has a broad spectrum. 5αR2 is expressed in specific tissues and catalyzes the transformation of testosterone (T) to 5α-dihydrotestosterone (DHT). DHT plays a key role in the process of sexual differentiation in the external genitalia and prostate during development of the male fetus.
Gynecomastia (also spelled gynaecomastia) is the abnormal non-cancerous enlargement of one or both breasts in males due to the growth of breast tissue as a result of a hormone imbalance between estrogens and androgens. Gynecomastia can cause significant psychological distress or unease. Gynecomastia can be normal in newborn male babies due to exposure to estrogen from the mother, in adolescent boys going through puberty, in older men over age 50, and/or in obese men. Most occurrences of gynecomastia do not require diagnostic tests.
Existing connectivity-oriented performance measures rank road delineation algorithms inconsistently, which makes it difficult to decide which one is best for a given application. We show that these inconsistencies stem from design flaws that make the metri ...
Steroid hormone receptors (HRs) are ligand-activated transcription factors that play a pivotal role in breast development and carcinogenesis. It is well established that estrogen receptor (ER) signaling is a major proliferative driver in estrogen receptor ...
EPFL2024
Breast cancer is the most common malignancy in women worldwide and understanding the risk factors affecting it is key for prevention. The relative risk of developing breast cancer is related to exposure to both endogenous hormones and exogenous natural and ...