Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Existing connectivity-oriented performance measures rank road delineation algorithms inconsistently, which makes it difficult to decide which one is best for a given application. We show that these inconsistencies stem from design flaws that make the metrics insensitive to whole classes of errors. This insensitivity is undesirable in metrics intended for capturing overall general quality of road reconstructions. In particular, the scores do not reflect the time needed for a human to fix the errors, because each one has to be fixed individually. To provide more reliable evaluation, we design three new metrics that are sensitive to all classes of errors. This sensitivity makes them more consistent even though they use very different approaches to comparing ground-truth and reconstructed road networks. We use both synthetic and real data to demonstrate this and advocate the use of these corrected metrics as a tool to gauge future progress.
Jens Ingensand, Thibaud Nicolas Chassin