Conversion of units is the conversion between different units of measurement for the same quantity, typically through multiplicative conversion factors which change the measured quantity value without changing its effects. Unit conversion is often easier within the metric or the SI than in others, due to the regular 10-base in all units and the prefixes that increase or decrease by 3 powers of 10 at a time. The process of conversion depends on the specific situation and the intended purpose. This may be governed by regulation, contract, technical specifications or other published standards. Engineering judgment may include such factors as: The precision and accuracy of measurement and the associated uncertainty of measurement. The statistical confidence interval or tolerance interval of the initial measurement. The number of significant figures of the measurement. The intended use of the measurement including the engineering tolerances. Historical definitions of the units and their derivatives used in old measurements; e.g., international foot vs. US survey foot. Some conversions from one system of units to another need to be exact, without increasing or decreasing the precision of the first measurement. This is sometimes called soft conversion. It does not involve changing the physical configuration of the item being measured. By contrast, a hard conversion or an adaptive conversion may not be exactly equivalent. It changes the measurement to convenient and workable numbers and units in the new system. It sometimes involves a slightly different configuration, or size substitution, of the item. Nominal values are sometimes allowed and used. The factor-label method, also known as the unit-factor method or the unity bracket method, is a widely used technique for unit conversions using the rules of algebra. The factor-label method is the sequential application of conversion factors expressed as fractions and arranged so that any dimensional unit appearing in both the numerator and denominator of any of the fractions can be cancelled out until only the desired set of dimensional units is obtained.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (32)
PHYS-101(l): General physics : mechanics (flipped classroom)
Le but du cours de physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
ME-454: Modelling and optimization of energy systems
The goal of the lecture is to present and apply techniques for the modelling and the thermo-economic optimisation of industrial process and energy systems. The lecture covers the problem statement, th
MICRO-428: Metrology
The course deals with the concept of measuring in different domains, particularly in the electrical, optical, and microscale domains. The course will end with a perspective on quantum measurements, wh
Show more
Related lectures (73)
Energy Conservation in Fluid Flows
Explores energy conservation in fluid flows, emphasizing practical applications and the importance of fundamental physics laws.
Revision of the SI: International System of Units
Explores the revision of the International System of Units, focusing on the kilogram, ampere, kelvin, and mole, and the impact on scientific measurements.
Water Quality Modeling
Covers Water Quality Modeling, including PHREEQC software installation, simulation structure, and chemical concentrations.
Show more
Related publications (29)

Benign termination of runaway electron beams on ASDEX Upgrade and TCV

Basil Duval, Stefano Coda, Joan Decker, Umar Sheikh, Claudia Colandrea, Luke Simons, Jean Arthur Cazabonne, Bernhard Sieglin, Gergely Papp

This paper discusses the development of a benign termination scenario for runaway electron (RE) beams on ASDEX Upgrade and TCV. A systematic study revealed that a low electron density (n e) companion plasma was required to achieve a large MHD instability, ...
Bristol2024

New Technologies to Enhance the Figures-of-Merit of GaN Power Devices

Luca Nela

Gallium Nitride (GaN) has enabled groundbreaking developments in the field of optoelectronics and radio frequency communication. More recently, GaN devices for power conversion applications have demonstrated excellent potential. Thanks to Gallium Nitride w ...
EPFL2022
Show more
Related concepts (19)
International System of Units
The International System of Units, internationally known by the abbreviation SI (for Système International), is the modern form of the metric system and the world's most widely used system of measurement. Established and maintained by the General Conference on Weights and Measures (CGPM), it is the only system of measurement with an official status in nearly every country in the world, employed in science, technology, industry, and everyday commerce.
System of units of measurement
A system of units of measurement, also known as a system of units or system of measurement, is a collection of units of measurement and rules relating them to each other. Systems of measurement have historically been important, regulated and defined for the purposes of science and commerce. Instances in use include the International System of Units or () (the modern form of the metric system), the British imperial system, and the United States customary system.
Kilogram
The kilogram (also kilogramme) is the base unit of mass in the International System of Units (SI), having the unit symbol kg. It is a widely used measure in science, engineering and commerce worldwide, and is often simply called a kilo colloquially. It means 'one thousand grams'. The kilogram is defined in terms of the second and the metre, both of which are based on fundamental physical constants. This allows a properly equipped metrology laboratory to calibrate a mass measurement instrument such as a Kibble balance as the primary standard to determine an exact kilogram mass.
Show more
Related MOOCs (2)
Synchrotrons and X-Ray Free Electron Lasers (part 1)
Synchrotrons and X-Ray Free Electron Lasers (part 1)
Synchrotrons and X-Ray Free Electron Lasers (part 2)
The first MOOC to provide an extensive introduction to synchrotron and XFEL facilities and associated techniques and applications.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.