**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Elementary abelian subgroups in p-groups with a cyclic derived group

Abstract

Let p be an arbitrary prime and let P be a finite p-group. The general objective of this paper is to obtain refined information on the homotopy type of the poset of all non-trivial elementary abelian subgroups of P, ordered by inclusion, and the poset of all elementary abelian subgroups of P of rank at least 2.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (27)

Related publications (33)

P-group

In mathematics, specifically group theory, given a prime number p, a p-group is a group in which the order of every element is a power of p. That is, for each element g of a p-group G, there exists a nonnegative integer n such that the product of pn copies of g, and not fewer, is equal to the identity element. The orders of different elements may be different powers of p. Abelian p-groups are also called p-primary or simply primary. A finite group is a p-group if and only if its order (the number of its elements) is a power of p.

Index of a subgroup

In mathematics, specifically group theory, the index of a subgroup H in a group G is the number of left cosets of H in G, or equivalently, the number of right cosets of H in G. The index is denoted or or . Because G is the disjoint union of the left cosets and because each left coset has the same size as H, the index is related to the orders of the two groups by the formula (interpret the quantities as cardinal numbers if some of them are infinite). Thus the index measures the "relative sizes" of G and H.

Frattini subgroup

In mathematics, particularly in group theory, the Frattini subgroup of a group G is the intersection of all maximal subgroups of G. For the case that G has no maximal subgroups, for example the trivial group {e} or a Prüfer group, it is defined by . It is analogous to the Jacobson radical in the theory of rings, and intuitively can be thought of as the subgroup of "small elements" (see the "non-generator" characterization below). It is named after Giovanni Frattini, who defined the concept in a paper published in 1885.

Jacques Thévenaz, Caroline Lassueur

For the group of endo-permutation modules of a finite p-group, there is a surjective reduction homomorphism from a complete discrete valuation ring of characteristic 0 to its residue field of characteristic p. We prove that this reduction map always has a ...

2019Let be a simple exceptional algebraic group of adjoint type over an algebraically closed field of characteristic and let be a subgroup of containing a regular unipotent element of . By a theorem of Testerman, is contained in a connected subgroup of of type ...

2019Jacques Thévenaz, Caroline Lassueur

We examine how, in prime characteristic p, the group of endotrivial modules of a finite group G and the group of endotrivial modules of a quotient of G modulo a normal subgroup of order prime to p are related. There is always an inflation map, but examples ...

2017