Proteomics is the large-scale study of proteins. Proteins are vital parts of living organisms, with many functions such as the formation of structural fibers of muscle tissue, enzymatic digestion of food, or synthesis and replication of DNA. In addition, other kinds of proteins include antibodies that protect an organism from infection, and hormones that send important signals throughout the body.
The proteome is the entire set of proteins produced or modified by an organism or system. Proteomics enables the identification of ever-increasing numbers of proteins. This varies with time and distinct requirements, or stresses, that a cell or organism undergoes.
Proteomics is an interdisciplinary domain that has benefited greatly from the genetic information of various genome projects, including the Human Genome Project. It covers the exploration of proteomes from the overall level of protein composition, structure, and activity, and is an important component of functional genomics.
Proteomics generally denotes the large-scale experimental analysis of proteins and proteomes, but often refers specifically to protein purification and mass spectrometry. Indeed, mass spectrometry is the most powerful method for analysis of proteomes, both in large samples composed of millions of cells and in single cells.
The first studies of proteins that could be regarded as proteomics began in 1975, after the introduction of the two-dimensional gel and mapping of the proteins from the bacterium Escherichia coli.
Proteome is blend of the words "protein" and "genome". It was coined in 1994 by then-Ph.D student Marc Wilkins at Macquarie University, which founded the first dedicated proteomics laboratory in 1995.
After genomics and transcriptomics, proteomics is the next step in the study of biological systems. It is more complicated than genomics because an organism's genome is more or less constant, whereas proteomes differ from cell to cell and from time to time. Distinct genes are expressed in different cell types, which means that even the basic set of proteins produced in a cell must be identified.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Biochemistry is a key discipline in the Life Sciences. Biological Chemistry I and II are two tightly interconnected courses that aims to understand in molecular terms the processes that make life poss
The course addresses methods/technologies to study how nutrition affects biological and pathophysiological processes. It provides an overview of molecular phenotyping of individuals and key aspects to
The goal is to provide students with a complete overview of the principles and key applications of modern mass spectrometry and meet the current practical demand of EPFL researchers to improve structu
Systems biology is the computational and mathematical analysis and modeling of complex biological systems. It is a biology-based interdisciplinary field of study that focuses on complex interactions within biological systems, using a holistic approach (holism instead of the more traditional reductionism) to biological research. Particularly from the year 2000 onwards, the concept has been used widely in biology in a variety of contexts.
The proteome is the entire set of proteins that is, or can be, expressed by a genome, cell, tissue, or organism at a certain time. It is the set of expressed proteins in a given type of cell or organism, at a given time, under defined conditions. Proteomics is the study of the proteome. While proteome generally refers to the proteome of an organism, multicellular organisms may have very different proteomes in different cells, hence it is important to distinguish proteomes in cells and organisms.
Genomics is an interdisciplinary field of biology focusing on the structure, function, evolution, mapping, and editing of genomes. A genome is an organism's complete set of DNA, including all of its genes as well as its hierarchical, three-dimensional structural configuration. In contrast to genetics, which refers to the study of individual genes and their roles in inheritance, genomics aims at the collective characterization and quantification of all of an organism's genes, their interrelations and influence on the organism.
Learn about how the quality of water is a direct result of complex bio-geo-chemical interactions, and about how to use these processes to mitigate water quality issues.
Explores protein mass spectrometry techniques, including labeling methods, quantitation, and biomarker discovery.
Explores protein mass spectrometry, search engines, and quantification methods in proteomics.
Explores mapping local proteome responsivity through chemical actionability, precision electrophile delivery, and spatial proteomics technologies.
, ,
Single-molecule proteomics based on nanopore technology has made significant advances in recent years. However, to achieve nanopore sensing with single amino acid resolution, several bottlenecks must be tackled: controlling nanopore sizes with nanoscale pr ...
As the fundamental machinery orchestrating cellular functions, proteins influence the state of every cell profoundly. As cells exhibit significant variations from one to another, analyzing the proteome on a single-cell level is imperative to unravel their ...
Borrowing some quotes from Harper Lee's novel "To Kill A Mockingbird" to help frame our manuscript, we discuss methods to profile local proteomes. We initially focus on chemical biology regimens that function in live organisms and use reactive biotin speci ...