In computer science, an algorithm is called non-blocking if failure or suspension of any thread cannot cause failure or suspension of another thread; for some operations, these algorithms provide a useful alternative to traditional blocking implementations. A non-blocking algorithm is lock-free if there is guaranteed system-wide progress, and wait-free if there is also guaranteed per-thread progress. "Non-blocking" was used as a synonym for "lock-free" in the literature until the introduction of obstruction-freedom in 2003.
The word "non-blocking" was traditionally used to describe telecommunications networks that could route a connection through a set of relays "without having to re-arrange existing calls" (see Clos network). Also, if the telephone exchange "is not defective, it can always make the connection" (see nonblocking minimal spanning switch).
Disadvantages of locks
The traditional approach to multi-threaded programming is to use locks to synchronize access to shared resources. Synchronization primitives such as mutexes, semaphores, and critical sections are all mechanisms by which a programmer can ensure that certain sections of code do not execute concurrently, if doing so would corrupt shared memory structures. If one thread attempts to acquire a lock that is already held by another thread, the thread will block until the lock is free.
Blocking a thread can be undesirable for many reasons. An obvious reason is that while the thread is blocked, it cannot accomplish anything: if the blocked thread had been performing a high-priority or real-time task, it would be highly undesirable to halt its progress.
Other problems are less obvious. For example, certain interactions between locks can lead to error conditions such as deadlock, livelock, and priority inversion. Using locks also involves a trade-off between coarse-grained locking, which can significantly reduce opportunities for parallelism, and fine-grained locking, which requires more careful design, increases locking overhead and is more prone to bugs.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
With the advent of modern architectures, it becomes crucial to master the underlying algorithmics of concurrency. The objective of this course is to study the foundations of concurrent algorithms and
Multiprocessors are a core component in all types of computing infrastructure, from phones to datacenters. This course will build on the prerequisites of processor design and concurrency to introduce
Computing is nowadays distributed over several machines, in a local IP-like network, a cloud or a P2P network. Failures are common and computations need to proceed despite partial failures of machin
In concurrent programming, an operation (or set of operations) is linearizable if it consists of an ordered list of invocation and response events, that may be extended by adding response events such that: The extended list can be re-expressed as a sequential history (is serializable). That sequential history is a subset of the original unextended list. Informally, this means that the unmodified list of events is linearizable if and only if its invocations were serializable, but some of the responses of the serial schedule have yet to return.
In computer science, a lock or mutex (from mutual exclusion) is a synchronization primitive: a mechanism that enforces limits on access to a resource when there are many threads of execution. A lock is designed to enforce a mutual exclusion concurrency control policy, and with a variety of possible methods there exists multiple unique implementations for different applications. Generally, locks are advisory locks, where each thread cooperates by acquiring the lock before accessing the corresponding data.
In computer science, priority inversion is a scenario in scheduling in which a high priority task is indirectly superseded by a lower priority task effectively inverting the assigned priorities of the tasks. This violates the priority model that high-priority tasks can only be prevented from running by higher-priority tasks. Inversion occurs when there is a resource contention with a low-priority task that is then preempted by a medium-priority task.
Cycles are one of the fundamental subgraph patterns and being able to enumerate them in graphs enables important applications in a wide variety of fields, including finance, biology, chemistry, and network science. However, to enable cycle enumeration in r ...
New York2023
Verification and testing of hardware heavily relies on cycle-accurate simulation of RTL.As single-processor performance is growing only slowly, conventional, single-threaded RTL simulation is becoming impractical for increasingly complex chip designs and s ...
EPFL2024
, ,
Finding cycles in directed graphs enables important applications in various domains such as finance, biology, chemistry, and network science. However, as the size of graph datasets continues to grow, it becomes increasingly difficult to discover cycles wit ...