Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
In mathematics, the automorphism group of an object X is the group consisting of automorphisms of X under composition of morphisms. For example, if X is a finite-dimensional vector space, then the automorphism group of X is the group of invertible linear transformations from X to itself (the general linear group of X). If instead X is a group, then its automorphism group is the group consisting of all group automorphisms of X. Especially in geometric contexts, an automorphism group is also called a symmetry group. A subgroup of an automorphism group is sometimes called a transformation group. Automorphism groups are studied in a general way in the field of . If X is a set with no additional structure, then any bijection from X to itself is an automorphism, and hence the automorphism group of X in this case is precisely the symmetric group of X. If the set X has additional structure, then it may be the case that not all bijections on the set preserve this structure, in which case the automorphism group will be a subgroup of the symmetric group on X. Some examples of this include the following: The automorphism group of a field extension is the group consisting of field automorphisms of L that fix K. If the field extension is Galois, the automorphism group is called the Galois group of the field extension. The automorphism group of the projective n-space over a field k is the projective linear group The automorphism group of a finite cyclic group of order n is isomorphic to , the multiplicative group of integers modulo n, with the isomorphism given by . In particular, is an abelian group. The automorphism group of a finite-dimensional real Lie algebra has the structure of a (real) Lie group (in fact, it is even a linear algebraic group: see below). If G is a Lie group with Lie algebra , then the automorphism group of G has a structure of a Lie group induced from that on the automorphism group of . If G is a group acting on a set X, the action amounts to a group homomorphism from G to the automorphism group of X and conversely.
Jeremy Luterbacher, Songlan Sun, Stefania Bertella, Anastasiia Komarova
Jeremy Luterbacher, Songlan Sun, Stefania Bertella, Anastasiia Komarova
Jeremy Luterbacher, Songlan Sun, Lorenz Perry Manker, Anastasiia Komarova