Stimulus modality, also called sensory modality, is one aspect of a stimulus or what is perceived after a stimulus. For example, the temperature modality is registered after heat or cold stimulate a receptor. Some sensory modalities include: light, sound, temperature, taste, pressure, and smell. The type and location of the sensory receptor activated by the stimulus plays the primary role in coding the sensation. All sensory modalities work together to heighten stimuli sensation when necessary.
Multimodal perception is the ability of the mammalian nervous system to combine all of the different inputs of the sensory nervous system to result in an enhanced detection or identification of a particular stimulus. Combinations of all sensory modalities are done in cases where a single sensory modality results in an ambiguous and incomplete result.
Integration of all sensory modalities occurs when multimodal neurons receive sensory information which overlaps with different modalities. Multimodal neurons are found in the superior colliculus; they respond to the versatility of various sensory inputs. The multimodal neurons lead to change of behavior and assist in analyzing behavior responses to certain stimulus. Information from two or more senses is encountered. Multimodal perception is not limited to one area of the brain: many brain regions are activated when sensory information is perceived from the environment. In fact, the hypothesis of having a centralized multisensory region is receiving continually more speculation, as several regions previously uninvestigated are now considered multimodal. The reasons behind this are currently being investigated by several research groups, but it is now understood to approach these issues from a decentralized theoretical perspective. Moreover, several labs using invertebrate model organisms will provide invaluable information to the community as these are more easily studied and are considered to have decentralized nervous systems.
Lip reading is a multimodal process for humans.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Deep Learning (DL) is the subset of Machine learning reshaping the future of transportation and mobility. In this class, we will show how DL can be used to teach autonomous vehicles to detect objects,
The goal is to guide students into the essential topics of Behavioral and Cognitive Neuroscience. The challenge for the student in this course is to integrate the diverse knowledge acquired from those
The course starts with fundamentals of electrical - and chemical signaling in neurons. Students then learn how neurons in the brain receive and process sensory information, and how other neurons contr
A sense is a biological system used by an organism for sensation, the process of gathering information about the world through the detection of stimuli. Although in some cultures five human senses were traditionally identified as such (namely sight, smell, touch, taste, and hearing), it is now recognized that there are many more. Senses used by non-human organisms are even greater in variety and number. During sensation, sense organs collect various stimuli (such as a sound or smell) for transduction, meaning transformation into a form that can be understood by the brain.
Synesthesia (American English) or synaesthesia (British English) is a perceptual phenomenon in which stimulation of one sensory or cognitive pathway leads to involuntary experiences in a second sensory or cognitive pathway. People who report a lifelong history of such experiences are known as synesthetes. Awareness of synesthetic perceptions varies from person to person. In one common form of synesthesia, known as grapheme–color synesthesia or color–graphemic synesthesia, letters or numbers are perceived as inherently colored.
Multisensory integration, also known as multimodal integration, is the study of how information from the different sensory modalities (such as sight, sound, touch, smell, self-motion, and taste) may be integrated by the nervous system. A coherent representation of objects combining modalities enables animals to have meaningful perceptual experiences. Indeed, multisensory integration is central to adaptive behavior because it allows animals to perceive a world of coherent perceptual entities.
Explores the synergy between machine learning and neuroscience, showcasing how deep neural networks can predict neural responses and the challenges faced by AI in robotics.
Viewers of 360-degree videos are provided with both visual modality to characterize their surrounding views and audio modality to indicate the sound direction. Though both modalities are important for saliency prediction, little work has been done by joint ...
To fully comprehend visual perception, we need to necessarily understand its temporal dimension. Our visual environment is highly dynamic, requiring the processing and integration of temporal signals in order to make sense of it. Many processes, such as th ...
EPFL2024
, ,
Tactile perception of softness serves a critical role in the survival, well-being, and social interaction among various species, including humans. This perception informs activities from food selection in animals to medical palpation for disease detection ...