**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Concept# Ehresmann connection

Summary

In differential geometry, an Ehresmann connection (after the French mathematician Charles Ehresmann who first formalized this concept) is a version of the notion of a connection, which makes sense on any smooth fiber bundle. In particular, it does not rely on the possible vector bundle structure of the underlying fiber bundle, but nevertheless, linear connections may be viewed as a special case. Another important special case of Ehresmann connections are principal connections on principal bundles, which are required to be equivariant in the principal Lie group action.
A covariant derivative in differential geometry is a linear differential operator which takes the directional derivative of a section of a vector bundle in a covariant manner. It also allows one to formulate a notion of a parallel section of a bundle in the direction of a vector: a section s is parallel along a vector X if . So a covariant derivative provides at least two things: a differential operator, and a notion of what it means to be parallel in each direction. An Ehresmann connection drops the differential operator completely and defines a connection axiomatically in terms of the sections parallel in each direction . Specifically, an Ehresmann connection singles out a vector subspace of each tangent space to the total space of the fiber bundle, called the horizontal space. A section s is then horizontal (i.e., parallel) in the direction X if lies in a horizontal space. Here we are regarding s as a function from the base M to the fiber bundle E, so that is then the pushforward of tangent vectors. The horizontal spaces together form a vector subbundle of .
This has the immediate benefit of being definable on a much broader class of structures than mere vector bundles. In particular, it is well-defined on a general fiber bundle. Furthermore, many of the features of the covariant derivative still remain: parallel transport, curvature, and holonomy.
The missing ingredient of the connection, apart from linearity, is covariance.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related MOOCs (1)

Related courses (1)

Related people (5)

Related publications (33)

MATH-512: Optimization on manifolds

We develop, analyze and implement numerical algorithms to solve optimization problems of the form: min f(x) where x is a point on a smooth manifold. To this end, we first study differential and Rieman

Related concepts (16)

Introduction to optimization on smooth manifolds: first order methods

Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).

Related lectures (22)

The contorsion tensor in differential geometry is the difference between a connection with and without torsion in it. It commonly appears in the study of spin connections. Thus, for example, a vielbein together with a spin connection, when subject to the condition of vanishing torsion, gives a description of Einstein gravity. For supersymmetry, the same constraint, of vanishing torsion, gives (the field equations of) 11-dimensional supergravity.

In mathematics, and especially differential geometry and gauge theory, a connection is a device that defines a notion of parallel transport on the bundle; that is, a way to "connect" or identify fibers over nearby points. A principal G-connection on a principal G-bundle P over a smooth manifold M is a particular type of connection which is compatible with the action of the group G. A principal connection can be viewed as a special case of the notion of an Ehresmann connection, and is sometimes called a principal Ehresmann connection.

In mathematics, and especially differential geometry and mathematical physics, gauge theory is the general study of connections on vector bundles, principal bundles, and fibre bundles. Gauge theory in mathematics should not be confused with the closely related concept of a gauge theory in physics, which is a field theory which admits gauge symmetry. In mathematics theory means a mathematical theory, encapsulating the general study of a collection of concepts or phenomena, whereas in the physical sense a gauge theory is a mathematical model of some natural phenomenon.

Facade Non-Porteuse: Construction Details

Covers the construction details of non-bearing facades and the connection details at a scale of 1/2.

Finite Element Analysis of Timber PlatesMOOC: Advanced Timber Plate Structural Design

Covers advanced timber plate structural design and finite element analysis using ABAQUS and OpenSees software.

Forcing of Topological Entropy

Delves into topological entropy in compact manifolds and Reeb flows, emphasizing the forcing of entropy via cylindrical contact homology.

Anastasios Vassilopoulos, Romain Pascal T van Wassenhove

A 3D printed bio-composite removable connection system for bamboo space structures is introduced in this paper. The system consists of a removable clipping connection for raw bamboo structures, adapted to the European market. The use of parametric design a ...

2021Mark Pauly, Peng Song, Ziqi Wang

An assembly refers to a collection of parts joined together to achieve a specific form and/or functionality. Designing assemblies is a non-trivial task as a slight local modification on a part's geometry or its joining method could have a global impact on ...

A floating platform for a wind turbine comprising a vertically arranged support; a toroidal body arranged horizontally and coaxially around said support; a plurality of connection elements which extends radially to connect the support to the toroidal body, ...

2023