**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Bang–bang control

Summary

In control theory, a bang–bang controller (hysteresis, 2 step or on–off controller), is a feedback controller that switches abruptly between two states. These controllers may be realized in terms of any element that provides hysteresis. They are often used to control a plant that accepts a binary input, for example a furnace that is either completely on or completely off. Most common residential thermostats are bang–bang controllers. The Heaviside step function in its discrete form is an example of a bang–bang control signal. Due to the discontinuous control signal, systems that include bang–bang controllers are variable structure systems, and bang–bang controllers are thus variable structure controllers.
In optimal control problems, it is sometimes the case that a control is restricted to be between a lower and an upper bound. If the optimal control switches from one extreme to the other (i.e., is strictly never in between the bounds), then that control is referred to as a bang-bang solution.
Bang–bang controls frequently arise in minimum-time problems. For example, if it is desired for a car starting at rest to arrive at a certain position ahead of the car in the shortest possible time, the solution is to apply maximum acceleration until the unique switching point, and then apply maximum braking to come to rest exactly at the desired position.
A familiar everyday example is bringing water to a boil in the shortest time, which is achieved by applying full heat, then turning it off when the water reaches a boil. A closed-loop household example is most thermostats, wherein the heating element or air conditioning compressor is either running or not, depending upon whether the measured temperature is above or below the setpoint.
Bang–bang solutions also arise when the Hamiltonian is linear in the control variable; application of Pontryagin's minimum or maximum principle will then lead to pushing the control to its upper or lower bound depending on the sign of the coefficient of u in the Hamiltonian.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related courses (6)

EE-715: Optimal control

This doctoral course provides an introduction to optimal control covering fundamental theory, numerical implementation and problem formulation for applications.

ME-422: Multivariable control

This course covers methods for the analysis and control of systems with multiple inputs and outputs, which are ubiquitous in modern technology and industry. Special emphasis will be given to discrete-

CS-107: Introduction to programming

Ce cours aborde les concepts fondamentaux de la programmation et de la programmation orientée objet (langage JAVA). Il permet également de se familisarier avec un environnement de développement inform

Related concepts (2)

Bang–bang control

In control theory, a bang–bang controller (hysteresis, 2 step or on–off controller), is a feedback controller that switches abruptly between two states. These controllers may be realized in terms of any element that provides hysteresis. They are often used to control a plant that accepts a binary input, for example a furnace that is either completely on or completely off. Most common residential thermostats are bang–bang controllers. The Heaviside step function in its discrete form is an example of a bang–bang control signal.

Control theory

Control theory is a field of control engineering and applied mathematics that deals with the control of dynamical systems in engineered processes and machines. The objective is to develop a model or algorithm governing the application of system inputs to drive the system to a desired state, while minimizing any delay, overshoot, or steady-state error and ensuring a level of control stability; often with the aim to achieve a degree of optimality. To do this, a controller with the requisite corrective behavior is required.

Related lectures (73)

Optimal Control: NMPCEE-715: Optimal control

Covers Nonlinear Model Predictive Control (NMPC) principles, including setpoint stabilization and Pontryagin's Maximum Principle.

StateSpace Reference TrackingME-321: Control systems + TP

Covers reference tracking in state-space systems and implementing control laws.

Optimal Control: OCPsEE-715: Optimal control

Covers Optimal Control Problems focusing on necessary conditions, existence of optimal controls, and numerical solutions.