Summary
In algebraic geometry, a proper morphism between schemes is an analog of a proper map between complex analytic spaces. Some authors call a proper variety over a field k a complete variety. For example, every projective variety over a field k is proper over k. A scheme X of finite type over the complex numbers (for example, a variety) is proper over C if and only if the space X(C) of complex points with the classical (Euclidean) topology is compact and Hausdorff. A closed immersion is proper. A morphism is finite if and only if it is proper and quasi-finite. A morphism f: X → Y of schemes is called universally closed if for every scheme Z with a morphism Z → Y, the projection from the fiber product is a closed map of the underlying topological spaces. A morphism of schemes is called proper if it is separated, of finite type, and universally closed ([EGA] II, 5.4.1 ). One also says that X is proper over Y. In particular, a variety X over a field k is said to be proper over k if the morphism X → Spec(k) is proper. For any natural number n, projective space Pn over a commutative ring R is proper over R. Projective morphisms are proper, but not all proper morphisms are projective. For example, there is a smooth proper complex variety of dimension 3 which is not projective over C. Affine varieties of positive dimension over a field k are never proper over k. More generally, a proper affine morphism of schemes must be finite. For example, it is not hard to see that the affine line A1 over a field k is not proper over k, because the morphism A1 → Spec(k) is not universally closed. Indeed, the pulled-back morphism (given by (x,y) ↦ y) is not closed, because the image of the closed subset xy = 1 in A1 × A1 = A2 is A1 − 0, which is not closed in A1. In the following, let f: X → Y be a morphism of schemes. The composition of two proper morphisms is proper. Any base change of a proper morphism f: X → Y is proper. That is, if g: Z → Y is any morphism of schemes, then the resulting morphism X ×Y Z → Z is proper.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood