Résumé
In algebraic geometry, a proper morphism between schemes is an analog of a proper map between complex analytic spaces. Some authors call a proper variety over a field k a complete variety. For example, every projective variety over a field k is proper over k. A scheme X of finite type over the complex numbers (for example, a variety) is proper over C if and only if the space X(C) of complex points with the classical (Euclidean) topology is compact and Hausdorff. A closed immersion is proper. A morphism is finite if and only if it is proper and quasi-finite. A morphism f: X → Y of schemes is called universally closed if for every scheme Z with a morphism Z → Y, the projection from the fiber product is a closed map of the underlying topological spaces. A morphism of schemes is called proper if it is separated, of finite type, and universally closed ([EGA] II, 5.4.1 ). One also says that X is proper over Y. In particular, a variety X over a field k is said to be proper over k if the morphism X → Spec(k) is proper. For any natural number n, projective space Pn over a commutative ring R is proper over R. Projective morphisms are proper, but not all proper morphisms are projective. For example, there is a smooth proper complex variety of dimension 3 which is not projective over C. Affine varieties of positive dimension over a field k are never proper over k. More generally, a proper affine morphism of schemes must be finite. For example, it is not hard to see that the affine line A1 over a field k is not proper over k, because the morphism A1 → Spec(k) is not universally closed. Indeed, the pulled-back morphism (given by (x,y) ↦ y) is not closed, because the image of the closed subset xy = 1 in A1 × A1 = A2 is A1 − 0, which is not closed in A1. In the following, let f: X → Y be a morphism of schemes. The composition of two proper morphisms is proper. Any base change of a proper morphism f: X → Y is proper. That is, if g: Z → Y is any morphism of schemes, then the resulting morphism X ×Y Z → Z is proper.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (7)
MATH-101(e): Analysis I
Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.
PHYS-739: Conformal Field theory and Gravity
This course is an introduction to the non-perturbative bootstrap approach to Conformal Field Theory and to the Gauge/Gravity duality, emphasizing the fruitful interplay between these two ideas.
MATH-510: Algebraic geometry II - schemes and sheaves
The aim of this course is to learn the basics of the modern scheme theoretic language of algebraic geometry.
Afficher plus
Publications associées (4)
Concepts associés (20)
Glossary of algebraic geometry
This is a glossary of algebraic geometry. See also glossary of commutative algebra, glossary of classical algebraic geometry, and glossary of ring theory. For the number-theoretic applications, see glossary of arithmetic and Diophantine geometry. For simplicity, a reference to the base scheme is often omitted; i.e., a scheme will be a scheme over some fixed base scheme S and a morphism an S-morphism.
Schéma (géométrie algébrique)
En mathématiques, les schémas sont les objets de base de la géométrie algébrique, généralisant la notion de variété algébrique de plusieurs façons, telles que la prise en compte des multiplicités, l'unicité des points génériques et le fait d'autoriser des équations à coefficients dans un anneau commutatif quelconque.
Pierre Deligne
Pierre René, vicomte Deligne est un mathématicien belge, né le à Etterbeek dans la Région de Bruxelles-Capitale. Pierre René Deligne est diplômé de l'Université libre de Bruxelles en 1966, en ayant effectué une année de scolarité à l’école normale supérieure en 1965-1966. Il soutient une première thèse de doctorat en 1968 à Bruxelles. De 1968 à 1984, il est membre de l’Institut des hautes études scientifiques, où il assiste aux séminaires d’Alexandre Grothendieck qu'il appelle son « maître ».
Afficher plus