Stone spaceIn topology and related areas of mathematics, a Stone space, also known as a profinite space or profinite set, is a compact totally disconnected Hausdorff space. Stone spaces are named after Marshall Harvey Stone who introduced and studied them in the 1930s in the course of his investigation of Boolean algebras, which culminated in his representation theorem for Boolean algebras.
Particular point topologyIn mathematics, the particular point topology (or included point topology) is a topology where a set is open if it contains a particular point of the topological space. Formally, let X be any non-empty set and p ∈ X. The collection of subsets of X is the particular point topology on X. There are a variety of cases that are individually named: If X has two points, the particular point topology on X is the Sierpiński space. If X is finite (with at least 3 points), the topology on X is called the finite particular point topology.
Alexandroff extensionIn the mathematical field of topology, the Alexandroff extension is a way to extend a noncompact topological space by adjoining a single point in such a way that the resulting space is compact. It is named after the Russian mathematician Pavel Alexandroff. More precisely, let X be a topological space. Then the Alexandroff extension of X is a certain compact space X* together with an open embedding c : X → X* such that the complement of X in X* consists of a single point, typically denoted ∞.
Axiom of countable choiceThe axiom of countable choice or axiom of denumerable choice, denoted ACω, is an axiom of set theory that states that every countable collection of non-empty sets must have a choice function. That is, given a function A with domain N (where N denotes the set of natural numbers) such that A(n) is a non-empty set for every n ∈ N, there exists a function f with domain N such that f(n) ∈ A(n) for every n ∈ N. The axiom of countable choice (ACω) is strictly weaker than the axiom of dependent choice (DC), which in turn is weaker than the axiom of choice (AC).
Relatively compact subspaceIn mathematics, a relatively compact subspace (or relatively compact subset, or precompact subset) Y of a topological space X is a subset whose closure is compact. Every subset of a compact topological space is relatively compact (since a closed subset of a compact space is compact). And in an arbitrary topological space every subset of a relatively compact set is relatively compact. Every compact subset of a Hausdorff space is relatively compact.
Hilbert cubeIn mathematics, the Hilbert cube, named after David Hilbert, is a topological space that provides an instructive example of some ideas in topology. Furthermore, many interesting topological spaces can be embedded in the Hilbert cube; that is, can be viewed as subspaces of the Hilbert cube (see below).
Metacompact spaceIn the mathematical field of general topology, a topological space is said to be metacompact if every open cover has a point-finite open refinement. That is, given any open cover of the topological space, there is a refinement that is again an open cover with the property that every point is contained only in finitely many sets of the refining cover. A space is countably metacompact if every countable open cover has a point-finite open refinement.
Countably compact spaceIn mathematics a topological space is called countably compact if every countable open cover has a finite subcover. A topological space X is called countably compact if it satisfies any of the following equivalent conditions: (1) Every countable open cover of X has a finite subcover. (2) Every infinite set A in X has an ω-accumulation point in X. (3) Every sequence in X has an accumulation point in X. (4) Every countable family of closed subsets of X with an empty intersection has a finite subfamily with an empty intersection.