Striated muscle tissue is a muscle tissue that features repeating functional units called sarcomeres. The presence of sarcomeres manifests as a series of bands visible along the muscle fibers, which is responsible for the striated appearance observed in microscopic images of this tissue. There are two types of striated muscle:
Cardiac muscle (heart muscle)
Skeletal muscle (muscle attached to the skeleton)
Striated muscle tissue contains T-tubules which enables the release of calcium ions from the sarcoplasmic reticulum.
Skeletal muscle includes skeletal muscle fibers, blood vessels, nerve fibers, and connective tissue. Skeletal muscle is wrapped in epimysium, allowing structural integrity of the muscle despite contractions. The perimysium organizes the muscle fibers, which are encased in collagen and endomysium, into fascicles. Each muscle fiber contains sarcolemma, sarcoplasm, and sarcoplasmic reticulum. The functional unit of a muscle fiber is called a sarcomere.
Each muscle cell contains myofibrils composed of actin and myosin myofilaments repeated as a sarcomere. Many nuclei are present in each muscle cell placed at regular intervals beneath the sarcolemma.
Based on their contractile and metabolic phenotypes, skeletal muscle can be classified as slow-oxidative (Type I) or fast-oxidative (Type II).
Cardiac muscle lies between the epicardium and the endocardium in the heart. Cardiac muscle cells generally only contain one nucleus, located in the central region. They contain many mitochondria and myoglobin. Unlike skeletal muscle, cardiac muscle cells are unicellular. These cells are connected to each other by intercalated disks, which contain gap junctions and desmosomes.
Unlike skeletal and cardiac muscle tissue, smooth muscle tissue is not striated since there are no sarcomeres present. Skeletal muscles are attached to some component of the skeleton, and smooth muscle is found in hollow structures such as the walls of intestines or blood vessels.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Striated muscle tissue is a muscle tissue that features repeating functional units called sarcomeres. The presence of sarcomeres manifests as a series of bands visible along the muscle fibers, which is responsible for the striated appearance observed in microscopic images of this tissue. There are two types of striated muscle: Cardiac muscle (heart muscle) Skeletal muscle (muscle attached to the skeleton) Striated muscle tissue contains T-tubules which enables the release of calcium ions from the sarcoplasmic reticulum.
The endocardium is the innermost layer of tissue that lines the chambers of the heart. Its cells are embryologically and biologically similar to the endothelial cells that line blood vessels. The endocardium also provides protection to the valves and heart chambers. The endocardium underlies the much more voluminous myocardium, the muscular tissue responsible for the contraction of the heart. The outer layer of the heart is termed epicardium and the heart is surrounded by a small amount of fluid enclosed by a fibrous sac called the pericardium.
Muscle contraction is the activation of tension-generating sites within muscle cells. In physiology, muscle contraction does not necessarily mean muscle shortening because muscle tension can be produced without changes in muscle length, such as when holding something heavy in the same position. The termination of muscle contraction is followed by muscle relaxation, which is a return of the muscle fibers to their low tension-generating state.
Ce cours est une préparation intensive à l'examen d'entrée en 3ème année de Médecine. Les matières enseignées sont la morphologie macroscopique (anatomie) , microscopique (histologie) de la tête, du c
Le but est de connaitre et comprendre le fonctionnement des systèmes cardiovasculaire, urinaire, respiratoire, digestif, ainsi que du métabolisme de base et sa régulation afin de déveloper une réflect
Ce cours permet aux étudiants ayant suivi Morphologie I de réviser et d'approfondir leurs connaissances par l'étude de l'anatomie radiologique et du développement. L'origine de malformations fréquente
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
In this Master thesis we aim at studying some physiological and computational aspects of the excitation-contraction mechanisms in the heart muscle. This phenomenon exhibits many complexities at differ
Numerical modeling of the human cardiovascular system (CVS) represents an active branch of research which allows the medical specialists to advance in understanding of underlined processes of blood ci
The progressive decline of muscle mass and function called sarcopenia is a multi-factorial process associated to frailty, disability, and low quality of life in the elderly. The co-factor nicotinamide