GravitinoIn supergravity theories combining general relativity and supersymmetry, the gravitino (_Gravitino) is the gauge fermion supersymmetric partner of the hypothesized graviton. It has been suggested as a candidate for dark matter. If it exists, it is a fermion of spin 3/2 and therefore obeys the Rarita–Schwinger equation. The gravitino field is conventionally written as ψμα with μ = 0, 1, 2, 3 a four-vector index and α = 1, 2 a spinor index. For μ = 0 one would get negative norm modes, as with every massless particle of spin 1 or higher.
SupermultipletIn theoretical physics, a supermultiplet is a representation of a supersymmetry algebra, possibly with extended supersymmetry. Then a superfield is a field on superspace which is valued in such a representation. Naïvely, or when considering flat superspace, a superfield can simply be viewed as a function on superspace. Formally, it is a section of an associated supermultiplet bundle. Phenomenologically, superfields are used to describe particles.
CharginoIn particle physics, the chargino is a hypothetical particle which refers to the mass eigenstates of a charged superpartner, i.e. any new electrically charged fermion (with spin 1/2) predicted by supersymmetry. They are linear combinations of the charged wino and charged higgsinos. There are two charginos that are fermions and are electrically charged, which are typically labeled _Chargino 1+- (the lightest) and _Chargino 2+- (the heaviest), although sometimes and are also used to refer to charginos, when is used to refer to neutralinos.
Hierarchy problemIn theoretical physics, the hierarchy problem is the problem concerning the large discrepancy between aspects of the weak force and gravity. There is no scientific consensus on why, for example, the weak force is 1024 times stronger than gravity. A hierarchy problem occurs when the fundamental value of some physical parameter, such as a coupling constant or a mass, in some Lagrangian is vastly different from its effective value, which is the value that gets measured in an experiment.
SupersymmetryIn a supersymmetric theory the equations for force and the equations for matter are identical. In theoretical and mathematical physics, any theory with this property has the principle of supersymmetry (SUSY). Dozens of supersymmetric theories exist. Supersymmetry is a spacetime symmetry between two basic classes of particles: bosons, which have an integer-valued spin and follow Bose–Einstein statistics, and fermions, which have a half-integer-valued spin and follow Fermi–Dirac statistics.
Proton decayIn particle physics, proton decay is a hypothetical form of particle decay in which the proton decays into lighter subatomic particles, such as a neutral pion and a positron. The proton decay hypothesis was first formulated by Andrei Sakharov in 1967. Despite significant experimental effort, proton decay has never been observed. If it does decay via a positron, the proton's half-life is constrained to be at least 1.67e34 years.
SuperpartnerIn particle physics, a superpartner (also sparticle) is a class of hypothetical elementary particles predicted by supersymmetry, which, among other applications, is one of the well-studied ways to extend the standard model of high-energy physics. When considering extensions of the Standard Model, the s- prefix from sparticle is used to form names of superpartners of the Standard Model fermions (sfermions), e.g. the stop squark. The superpartners of Standard Model bosons have an -ino (bosinos) appended to their name, e.
Naturalness (physics)In physics, naturalness is the aesthetic property that the dimensionless ratios between free parameters or physical constants appearing in a physical theory should take values "of order 1" and that free parameters are not fine-tuned. That is, a natural theory would have parameter ratios with values like 2.34 rather than 234000 or 0.000234. The requirement that satisfactory theories should be "natural" in this sense is a current of thought initiated around the 1960s in particle physics.
Stop squarkIn particle physics, a stop squark, symbol _top squark, is the superpartner of the top quark as predicted by supersymmetry (SUSY). It is a sfermion, which means it is a spin-0 boson (scalar boson). While the top quark is the heaviest known quark, the stop squark is actually often the lightest squark in many supersymmetry models. The stop squark is a key ingredient of a wide range of SUSY models that address the hierarchy problem of the Standard Model (SM) in a natural way.
Split supersymmetryIn particle physics, split supersymmetry is a proposal for physics beyond the Standard Model. It was proposed separately in three papers. The first by James Wells in June 2003 in a more modest form that mildly relaxed the assumption about naturalness in the Higgs potential. In May 2004 Nima Arkani-Hamed and Savas Dimopoulos argued that naturalness in the Higgs sector may not be an accurate guide to propose new physics beyond the Standard Model and argued that supersymmetry may be realized in a different fashion that preserved gauge coupling unification and has a dark matter candidate.