**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Concept# Hierarchy problem

Summary

In theoretical physics, the hierarchy problem is the problem concerning the large discrepancy between aspects of the weak force and gravity. There is no scientific consensus on why, for example, the weak force is 1024 times stronger than gravity.
A hierarchy problem occurs when the fundamental value of some physical parameter, such as a coupling constant or a mass, in some Lagrangian is vastly different from its effective value, which is the value that gets measured in an experiment. This happens because the effective value is related to the fundamental value by a prescription known as renormalization, which applies corrections to it. Typically the renormalized value of parameters are close to their fundamental values, but in some cases, it appears that there has been a delicate cancellation between the fundamental quantity and the quantum corrections. Hierarchy problems are related to fine-tuning problems and problems of naturalness. Over the past decade many scientists argued that the hierarchy problem is a specific application of Bayesian statistics.
Studying renormalization in hierarchy problems is difficult, because such quantum corrections are usually power-law divergent, which means that the shortest-distance physics are most important. Because we do not know the precise details of the shortest-distance theory of physics, we cannot even address how this delicate cancellation between two large terms occurs. Therefore, researchers are led to postulate new physical phenomena that resolve hierarchy problems without fine-tuning.
Suppose a physics model requires four parameters which allow it to produce a very high-quality working model, generating predictions of some aspect of our physical universe. Suppose we find through experiments that the parameters have values: 1.2, 1.31, 0.9 and 404,331,557,902,116,024,553,602,703,216.58 (roughly 4×1029).
Scientists might wonder how such figures arise. But in particular, might be especially curious about a theory where three values are close to one, and the fourth is so different; in other words, the huge disproportion we seem to find between the first three parameters and the fourth.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related courses (3)

Related lectures (28)

Related publications (64)

QED: Gauge Theories

Covers Quantum Electrodynamics (QED), instantons, Feynman rules, and gauge theories in modern particle physics.

Feynman Rules II: QED

Explores Feynman rules in QED, emphasizing normal ordered product and Wick's theorem, instantons, and relativistic amplitudes.

Gauge Theories And Modern Particle Physics

Covers gauge theories, modern particle physics, the standard model, and field content.

The goal of this course is to explain the conceptual and mathematical bases of the Standard Model of fundamental interactions and to illustrate in detail its phenomenological consequences.

The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions such as Quantum Electrodynamics.

Supersymmetry is the unique quantum extension of the symmetry principles of relativity.
This course offers a first but broad introduction covering the role of Supersymmetry in our understanding of bot

Ontological neighbourhood

Related concepts (16)

Related units (11)

Related people (31)

Higgs boson

The Higgs boson, sometimes called the Higgs particle, is an elementary particle in the Standard Model of particle physics produced by the quantum excitation of the Higgs field, one of the fields in particle physics theory. In the Standard Model, the Higgs particle is a massive scalar boson with zero spin, even (positive) parity, no electric charge, and no colour charge that couples to (interacts with) mass. It is also very unstable, decaying into other particles almost immediately upon generation.

Theory of everything

A theory of everything (TOE), final theory, ultimate theory, unified field theory or master theory is a hypothetical, singular, all-encompassing, coherent theoretical framework of physics that fully explains and links together all aspects of the universe. Finding a theory of everything is one of the major unsolved problems in physics. String theory and M-theory have been proposed as theories of everything. Over the past few centuries, two theoretical frameworks have been developed that, together, most closely resemble a theory of everything.

Large extra dimensions

In particle physics and string theory (M-theory), the ADD model, also known as the model with large extra dimensions (LED), is a model framework that attempts to solve the hierarchy problem. (Why is the force of gravity so weak compared to the electromagnetic force and the other fundamental forces?) The model tries to explain this problem by postulating that our universe, with its four dimensions (three spatial ones plus time), exists on a membrane in a higher dimensional space.

, , , , , , , , ,

In [1], logarithmic correction to subleading soft photon and soft graviton theorems have been derived in four spacetime dimensions from the ratio of IR-finite S-matrices. This has been achieved after factoring out IR-divergent components from the tradition ...

Sander Johannes Nicolaas Mooij

The standard way to do computations in Quantum Field Theory (QFT) often results in the requirement of dramatic cancellations between contributions induced by a "heavy" sector into the physical observables of the "light" (or low energy) sector - the phenome ...

We study an attractive scenario, "Sleptonic SUSY", which reconciles the 125 GeV Higgs scalar and the non-observation of superpartners thus far with potentially pivotal roles for slepton phenomenology: providing viable ongoing targets for LHC discovery, inc ...