Dual (category theory)In , a branch of mathematics, duality is a correspondence between the properties of a category C and the dual properties of the Cop. Given a statement regarding the category C, by interchanging the source and target of each morphism as well as interchanging the order of composing two morphisms, a corresponding dual statement is obtained regarding the opposite category Cop. Duality, as such, is the assertion that truth is invariant under this operation on statements.
Pullback (category theory)In , a branch of mathematics, a pullback (also called a fiber product, fibre product, fibered product or Cartesian square) is the of a consisting of two morphisms f : X → Z and g : Y → Z with a common codomain. The pullback is written P = X ×f, Z, g Y. Usually the morphisms f and g are omitted from the notation, and then the pullback is written P = X ×Z Y. The pullback comes equipped with two natural morphisms P → X and P → Y. The pullback of two morphisms f and g need not exist, but if it does, it is essentially uniquely defined by the two morphisms.
Filter (mathematics)In mathematics, a filter or order filter is a special subset of a partially ordered set (poset), describing "large" or "eventual" elements. Filters appear in order and lattice theory, but also topology, whence they originate. The notion dual to a filter is an order ideal. Special cases of filters include ultrafilters, which are filters that cannot be enlarged, and describe nonconstructive techniques in mathematical logic. Filters on sets were introduced by Henri Cartan in 1937.
Hom functorIn mathematics, specifically in , hom-sets (i.e. sets of morphisms between ) give rise to important functors to the . These functors are called hom-functors and have numerous applications in category theory and other branches of mathematics. Let C be a (i.e. a for which hom-classes are actually sets and not proper classes). For all objects A and B in C we define two functors to the as follows: {| class=wikitable |- ! Hom(A, –) : C → Set ! Hom(–, B) : C → Set |- | This is a covariant functor given by: Hom(A, –) maps each object X in C to the set of morphisms, Hom(A, X) Hom(A, –) maps each morphism f : X → Y to the function Hom(A, f) : Hom(A, X) → Hom(A, Y) given by for each g in Hom(A, X).
Compact-open topologyIn mathematics, the compact-open topology is a topology defined on the set of continuous maps between two topological spaces. The compact-open topology is one of the commonly used topologies on function spaces, and is applied in homotopy theory and functional analysis. It was introduced by Ralph Fox in 1945. If the codomain of the functions under consideration has a uniform structure or a metric structure then the compact-open topology is the "topology of uniform convergence on compact sets.
Dual objectIn , a branch of mathematics, a dual object is an analogue of a dual vector space from linear algebra for in arbitrary . It is only a partial generalization, based upon the categorical properties of duality for finite-dimensional vector spaces. An object admitting a dual is called a dualizable object. In this formalism, infinite-dimensional vector spaces are not dualizable, since the dual vector space V∗ doesn't satisfy the axioms. Often, an object is dualizable only when it satisfies some finiteness or compactness property.
Serre dualityIn algebraic geometry, a branch of mathematics, Serre duality is a duality for the coherent sheaf cohomology of algebraic varieties, proved by Jean-Pierre Serre. The basic version applies to vector bundles on a smooth projective variety, but Alexander Grothendieck found wide generalizations, for example to singular varieties. On an n-dimensional variety, the theorem says that a cohomology group is the dual space of another one, . Serre duality is the analog for coherent sheaf cohomology of Poincaré duality in topology, with the canonical line bundle replacing the orientation sheaf.
Gelfand representationIn mathematics, the Gelfand representation in functional analysis (named after I. M. Gelfand) is either of two things: a way of representing commutative Banach algebras as algebras of continuous functions; the fact that for commutative C*-algebras, this representation is an isometric isomorphism. In the former case, one may regard the Gelfand representation as a far-reaching generalization of the Fourier transform of an integrable function.
Injective moduleIn mathematics, especially in the area of abstract algebra known as module theory, an injective module is a module Q that shares certain desirable properties with the Z-module Q of all rational numbers. Specifically, if Q is a submodule of some other module, then it is already a direct summand of that module; also, given a submodule of a module Y, any module homomorphism from this submodule to Q can be extended to a homomorphism from all of Y to Q. This concept is to that of projective modules.
Delaunay triangulationIn mathematics and computational geometry, a Delaunay triangulation (also known as a Delone triangulation) for a given set P of discrete points in a general position is a triangulation DT(P) such that no point in P is inside the circumcircle of any triangle in DT(P). Delaunay triangulations maximize the minimum of all the angles of the triangles in the triangulation; they tend to avoid sliver triangles. The triangulation is named after Boris Delaunay for his work on this topic from 1934.