**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Concept# Chain rule

Summary

In calculus, the chain rule is a formula that expresses the derivative of the composition of two differentiable functions f and g in terms of the derivatives of f and g. More precisely, if is the function such that for every x, then the chain rule is, in Lagrange's notation,
or, equivalently,
The chain rule may also be expressed in Leibniz's notation. If a variable z depends on the variable y, which itself depends on the variable x (that is, y and z are dependent variables), then z depends on x as well, via the intermediate variable y. In this case, the chain rule is expressed as
and
for indicating at which points the derivatives have to be evaluated.
In integration, the counterpart to the chain rule is the substitution rule.
Intuitively, the chain rule states that knowing the instantaneous rate of change of z relative to y and that of y relative to x allows one to calculate the instantaneous rate of change of z relative to x as the product of the two rates of change.
As put by George F. Simmons: "If a car travels twice as fast as a bicycle and the bicycle is four times as fast as a walking man, then the car travels 2 × 4 = 8 times as fast as the man."
The relationship between this example and the chain rule is as follows. Let z, y and x be the (variable) positions of the car, the bicycle, and the walking man, respectively. The rate of change of relative positions of the car and the bicycle is Similarly, So, the rate of change of the relative positions of the car and the walking man is
The rate of change of positions is the ratio of the speeds, and the speed is the derivative of the position with respect to the time; that is,
or, equivalently,
which is also an application of the chain rule.
The chain rule seems to have first been used by Gottfried Wilhelm Leibniz. He used it to calculate the derivative of as the composite of the square root function and the function . He first mentioned it in a 1676 memoir (with a sign error in the calculation). The common notation of the chain rule is due to Leibniz.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related people (3)

Related concepts (23)

Related courses (32)

Related publications (32)

Related MOOCs (17)

Related lectures (282)

MATH-201: Analysis III

Calcul différentiel et intégral.
Eléments d'analyse complexe.

PHYS-100: Advanced physics I (mechanics)

La Physique Générale I (avancée) couvre la mécanique du point et du solide indéformable. Apprendre la mécanique, c'est apprendre à mettre sous forme mathématique un phénomène physique, en modélisant l

MATH-101(g): Analysis I

Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.

Derivative

In mathematics, the derivative shows the sensitivity of change of a function's output with respect to the input. Derivatives are a fundamental tool of calculus. For example, the derivative of the position of a moving object with respect to time is the object's velocity: this measures how quickly the position of the object changes when time advances. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point.

Integral

In mathematics, an integral is the continuous analog of a sum, which is used to calculate areas, volumes, and their generalizations. Integration, the process of computing an integral, is one of the two fundamental operations of calculus, the other being differentiation. Integration started as a method to solve problems in mathematics and physics, such as finding the area under a curve, or determining displacement from velocity. Today integration is used in a wide variety of scientific fields.

Inverse function

In mathematics, the inverse function of a function f (also called the inverse of f) is a function that undoes the operation of f. The inverse of f exists if and only if f is bijective, and if it exists, is denoted by For a function , its inverse admits an explicit description: it sends each element to the unique element such that f(x) = y. As an example, consider the real-valued function of a real variable given by f(x) = 5x − 7. One can think of f as the function which multiplies its input by 5 then subtracts 7 from the result.

Linear Algebra: Matrix Operations

Covers matrix operations and properties, including eigenvalues and eigenvectors.

Derivability and Composition of Functions

Explores derivability and function composition with examples.

Generalized Integrals: Convergence and Divergence

Explores the convergence and divergence of generalized integrals using comparison methods and variable transformations.

Introduction to optimization on smooth manifolds: first order methods

Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).

Advanced statistical physics

We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.

Advanced statistical physics

We explore statistical physics in both classical and open quantum systems. Additionally, we will cover probabilistic data analysis that is extremely useful in many applications.

Negar Kiyavash, Seyed Jalal Etesami

We consider a learning system based on the conventional multiplicative weight ( MW) rule that combines experts' advice to predict a sequence of true outcomes. It is assumed that one of the experts is malicious and aims to impose the maximum loss on the sys ...

Pavlos Nikolopoulos, Muhammad Abdullah, Zeinab Shmeis

Network neutrality is important for users, content providers, policymakers, and regulators interested in understanding how network providers differentiate performance. When determining whether a network differentiates against certain traffic, it is importa ...

2023Wenzel Alban Jakob, Tizian Lucien Zeltner, Sébastien Nicolas Speierer

Physically based differentiable rendering algorithms propagate derivatives through realistic light transport simulations and have applications in diverse areas including inverse reconstruction and machine learning. Recent progress has led to unbiased metho ...

Ontological neighbourhood

: