In mathematics, a Siegel modular variety or Siegel moduli space is an algebraic variety that parametrizes certain types of abelian varieties of a fixed dimension. More precisely, Siegel modular varieties are the moduli spaces of principally polarized abelian varieties of a fixed dimension. They are named after Carl Ludwig Siegel, the 20th-century German number theorist who introduced the varieties in 1943.
Siegel modular varieties are the most basic examples of Shimura varieties. Siegel modular varieties generalize moduli spaces of elliptic curves to higher dimensions and play a central role in the theory of Siegel modular forms, which generalize classical modular forms to higher dimensions. They also have applications to black hole entropy and conformal field theory.
The Siegel modular variety Ag, which parametrize principally polarized abelian varieties of dimension g, can be constructed as the complex analytic spaces constructed as the quotient of the Siegel upper half-space of degree g by the action of a symplectic group. Complex analytic spaces have naturally associated algebraic varieties by Serre's GAGA.
The Siegel modular variety Ag(n), which parametrize principally polarized abelian varieties of dimension g with a level n-structure, arises as the quotient of the Siegel upper half-space by the action of the principal congruence subgroup of level n of a symplectic group.
A Siegel modular variety may also be constructed as a Shimura variety defined by the Shimura datum associated to a symplectic vector space.
The Siegel modular variety Ag has dimension g(g + 1)/2. Furthermore, it was shown by Yung-Sheng Tai, Eberhard Freitag, and David Mumford that Ag is of general type when g ≥ 7.
Siegel modular varieties can be compactified to obtain projective varieties. In particular, a compactification of A2(2) is birationally equivalent to the Segre cubic which is in fact rational. Similarly, a compactification of A2(3) is birationally equivalent to the Burkhardt quartic which is also rational.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
This will be a basic course on abelian varieties. We will start with the analytic point of view, and then we will pass on to the algebraic one. A basic knowledge of differential geometry and algebraic
The goal of this course/seminar is to introduce the students to some contemporary aspects of geometric group theory. Emphasis will be put on Artin's Braid groups and Thompson's groups.
In mathematics, Siegel modular forms are a major type of automorphic form. These generalize conventional elliptic modular forms which are closely related to elliptic curves. The complex manifolds constructed in the theory of Siegel modular forms are Siegel modular varieties, which are basic models for what a moduli space for abelian varieties (with some extra level structure) should be and are constructed as quotients of the Siegel upper half-space rather than the upper half-plane by discrete groups.
In mathematics, arithmetic geometry is roughly the application of techniques from algebraic geometry to problems in number theory. Arithmetic geometry is centered around Diophantine geometry, the study of rational points of algebraic varieties. In more abstract terms, arithmetic geometry can be defined as the study of schemes of finite type over the spectrum of the ring of integers. The classical objects of interest in arithmetic geometry are rational points: sets of solutions of a system of polynomial equations over number fields, finite fields, p-adic fields, or function fields, i.
In mathematics, in particular algebraic geometry, a moduli space is a geometric space (usually a scheme or an algebraic stack) whose points represent algebro-geometric objects of some fixed kind, or isomorphism classes of such objects. Such spaces frequently arise as solutions to classification problems: If one can show that a collection of interesting objects (e.g., the smooth algebraic curves of a fixed genus) can be given the structure of a geometric space, then one can parametrize such objects by introducing coordinates on the resulting space.
We prove that if (X, A) is a threefold pair with mild singularities such that -(KX + A) is nef, then the numerical class of -(KX + A) is effective. ...
We develop a framework to construct moduli spaces of Q-Gorenstein pairs. To do so, we fix certain invariants; these choices are encoded in the notion of Q-stable pair. We show that these choices give a proper moduli space with projective coarse moduli spac ...
We define p-adic BPS or pBPS invariants for moduli spaces M-beta,M-chi of one-dimensional sheaves on del Pezzo and K3 surfaces by means of integration over a non-archimedean local field F. Our definition relies on a canonical measure mu can on the F-analyt ...