En algèbre linéaire, la décomposition LU est une méthode de décomposition d'une matrice comme produit d'une matrice triangulaire inférieure (comme lower, inférieure en anglais) par une matrice triangulaire supérieure (comme upper, supérieure). Cette décomposition est utilisée en analyse numérique pour résoudre des systèmes d'équations linéaires. Soit une matrice carrée. On dit que admet une décomposition LU s'il existe une matrice triangulaire inférieure formée de 1 sur la diagonale, notée , et une matrice triangulaire supérieure, notée , qui vérifient l'égalité Il n'est pas toujours vrai qu'une matrice admette une décomposition LU. Cependant dans certains cas, en permutant des lignes de , la décomposition devient possible. On obtient alors une décomposition de la forme où est une matrice de permutation. Bien que les décompositions LU et PLU conduisent à des formules distinctes, généralement quand on parle de la décomposition LU, on fait référence à l'une ou l'autre de ces décompositions. La matrice symétrique se factorise de la façon suivante : Cette factorisation matricielle permet de résoudre des systèmes d'équations linéaires où les coefficients des inconnues sont les mêmes, mais avec plusieurs seconds membres différents. Soit à déterminer le vecteur d'inconnues associé au second membre : Ce problème est donc équivalent à la résolution de que l'on peut mettre, en posant , sous la forme : On trouve les composantes de par des substitutions élémentaires, puisque d'abord donc , puis , donc , etc. Cette étape est appelée descente, puisqu'on résout le système en descendant de à . Il reste à calculer les composantes du vecteur en résolvant le système triangulaire supérieur : ce qui se fait de manière similaire, mais en calculant d'abord : etc. en remontant (étape dite de remontée). Remarque. - Les matrices triangulaires et auraient pu être inversées aisément en utilisant l'élimination de Gauss-Jordan.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (31)
MATH-111(e): Linear Algebra
L'objectif du cours est d'introduire les notions de base de l'algèbre linéaire et ses applications.
PHYS-332: Computational physics III
This course teaches the students practical skills needed for solving modern physics problems by means of computation. A number of examples illustrate the utility of numerical computations in various d
MATH-251(b): Numerical analysis
The students will learn key numerical techniques for solving standard mathematical problems in science and engineering. The underlying mathematical theory and properties are discussed.
Afficher plus
Publications associées (260)
Concepts associés (22)
Matrice (mathématiques)
thumb|upright=1.5 En mathématiques, les matrices sont des tableaux d'éléments (nombres, caractères) qui servent à interpréter en termes calculatoires, et donc opérationnels, les résultats théoriques de l'algèbre linéaire et même de l'algèbre bilinéaire. Toutes les disciplines étudiant des phénomènes linéaires utilisent les matrices. Quant aux phénomènes non linéaires, on en donne souvent des approximations linéaires, comme en optique géométrique avec les approximations de Gauss.
Décomposition QR
En algèbre linéaire, la décomposition QR (appelée aussi, factorisation QR ou décomposition QU) d'une matrice A est une décomposition de la forme où Q est une matrice orthogonale (QQ=I), et R une matrice triangulaire supérieure. Ce type de décomposition est souvent utilisé pour le calcul de solutions de systèmes linéaires non carrés, notamment pour déterminer la pseudo-inverse d'une matrice. En effet, les systèmes linéaires AX = Y peuvent alors s'écrire : QRX = Y ou RX = QY.
Complément de Schur
En algèbre linéaire et plus précisément en théorie des matrices, le complément de Schur est défini comme suit. Soit une matrice de dimension (p+q)×(p+q), où les blocs A, B, C, D sont des matrices de dimensions respectives p×p, p×q, q×p et q×q, avec D inversible. Alors, le complément de Schur du bloc D de la matrice M est constitué par la matrice de dimension p×p suivante : Lorsque B est la transposée de C, la matrice M est symétrique définie positive si et seulement si D et son complément de Schur dans M le sont.
Afficher plus
MOOCs associés (11)
Algèbre Linéaire (Partie 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algèbre Linéaire (Partie 1)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Algèbre Linéaire (Partie 2)
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.