En algèbre linéaire, la décomposition LU est une méthode de décomposition d'une matrice comme produit d'une matrice triangulaire inférieure (comme lower, inférieure en anglais) par une matrice triangulaire supérieure (comme upper, supérieure). Cette décomposition est utilisée en analyse numérique pour résoudre des systèmes d'équations linéaires.
Soit une matrice carrée. On dit que admet une décomposition LU s'il existe une matrice triangulaire inférieure formée de 1 sur la diagonale, notée , et une matrice triangulaire supérieure, notée , qui vérifient l'égalité
Il n'est pas toujours vrai qu'une matrice admette une décomposition LU. Cependant dans certains cas, en permutant des lignes de , la décomposition devient possible. On obtient alors une décomposition de la forme
où est une matrice de permutation.
Bien que les décompositions LU et PLU conduisent à des formules distinctes, généralement quand on parle de la décomposition LU, on fait référence à l'une ou l'autre de ces décompositions.
La matrice symétrique
se factorise de la façon suivante :
Cette factorisation matricielle permet de résoudre des systèmes d'équations linéaires où les coefficients des inconnues sont les mêmes, mais avec plusieurs seconds membres différents. Soit à déterminer le vecteur d'inconnues associé au second membre :
Ce problème est donc équivalent à la résolution de
que l'on peut mettre, en posant , sous la forme :
On trouve les composantes de par des substitutions élémentaires, puisque d'abord donc , puis , donc , etc.
Cette étape est appelée descente, puisqu'on résout le système en descendant de à . Il reste à calculer les composantes du vecteur en résolvant le système triangulaire supérieur :
ce qui se fait de manière similaire, mais en calculant d'abord :
etc. en remontant (étape dite de remontée).
Remarque. - Les matrices triangulaires et auraient pu être inversées aisément en utilisant l'élimination de Gauss-Jordan.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
This course teaches the students practical skills needed for solving modern physics problems by means of computation. A number of examples illustrate the utility of numerical computations in various d
The students will learn key numerical techniques for solving standard mathematical problems in science and engineering. The underlying mathematical theory and properties are discussed.
thumb|upright=1.5 En mathématiques, les matrices sont des tableaux d'éléments (nombres, caractères) qui servent à interpréter en termes calculatoires, et donc opérationnels, les résultats théoriques de l'algèbre linéaire et même de l'algèbre bilinéaire. Toutes les disciplines étudiant des phénomènes linéaires utilisent les matrices. Quant aux phénomènes non linéaires, on en donne souvent des approximations linéaires, comme en optique géométrique avec les approximations de Gauss.
En algèbre linéaire, la décomposition QR (appelée aussi, factorisation QR ou décomposition QU) d'une matrice A est une décomposition de la forme où Q est une matrice orthogonale (QQ=I), et R une matrice triangulaire supérieure. Ce type de décomposition est souvent utilisé pour le calcul de solutions de systèmes linéaires non carrés, notamment pour déterminer la pseudo-inverse d'une matrice. En effet, les systèmes linéaires AX = Y peuvent alors s'écrire : QRX = Y ou RX = QY.
En algèbre linéaire et plus précisément en théorie des matrices, le complément de Schur est défini comme suit. Soit une matrice de dimension (p+q)×(p+q), où les blocs A, B, C, D sont des matrices de dimensions respectives p×p, p×q, q×p et q×q, avec D inversible. Alors, le complément de Schur du bloc D de la matrice M est constitué par la matrice de dimension p×p suivante : Lorsque B est la transposée de C, la matrice M est symétrique définie positive si et seulement si D et son complément de Schur dans M le sont.
We present two open-source Python packages: "electron spectro-microscopy"(espm) and "electron microscopy tables"(emtables). The espm software enables the simulation of scanning transmission electron microscopy energy-dispersive X-ray spectroscopy datacubes ...
ELSEVIER2023
We present an implementation of the Frenkel exciton model into the OpenMolcas program package enabling calculations of collective electronic excited states of molecular aggregates based on a multiconfigurational wave function description of the individual ...
The set of finite binary matrices of a given size is known to carry a finite type AA bicrystal structure. We first review this classical construction, explain how it yields a short proof of the equality between Kostka polynomials and one-dimensional sums t ...