Concept

Rolling-element bearing

In mechanical engineering, a rolling-element bearing, also known as a rolling bearing, is a bearing which carries a load by placing rolling elements (such as balls or rollers) between two concentric, grooved rings called races. The relative motion of the races causes the rolling elements to roll with very little rolling resistance and with little sliding. One of the earliest and best-known rolling-element bearings are sets of logs laid on the ground with a large stone block on top. As the stone is pulled, the logs roll along the ground with little sliding friction. As each log comes out the back, it is moved to the front where the block then rolls on to it. It is possible to imitate such a bearing by placing several pens or pencils on a table and placing an item on top of them. See "bearings" for more on the historical development of bearings. A rolling element rotary bearing uses a shaft in a much larger hole, and spheres or cylinders called "rollers" tightly fill the space between the shaft and hole. As the shaft turns, each roller acts as the logs in the above example. However, since the bearing is round, the rollers never fall out from under the load. Rolling-element bearings have the advantage of a good trade-off between cost, size, weight, carrying capacity, durability, accuracy, friction, and so on. Other bearing designs are often better on one specific attribute, but worse in most other attributes, although fluid bearings can sometimes simultaneously outperform on carrying capacity, durability, accuracy, friction, rotation rate and sometimes cost. Only plain bearings are used as widely as rolling-element bearings. Common mechanical components where they are widely used are - automotive, industrial, marine, and aerospace applications. They are products of great necessity for modern technology. The rolling element bearing was developed from a firm foundation that was built over thousands of years.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (18)
ME-101: Mechanical construction I (for ME)
Le cours ME-101 vise à l'acquisition des règles et du langage normalisé de la communication technique, et des bases de la conception mécanique. Ce cours intègre des travaux pratiques d'initiation à la
ME-106: Mechanical construction I (for MT)
Le cours ME-106 vise à l'acquisition des règles et du langage normalisé de la communication technique, et des bases de la conception mécanique. Ce cours intègre des travaux pratiques d'initiation à la
MICRO-200: Mechanism Design I
Ce cours introduit les bases de la mécanique des structures : calcul des contraintes et déformations provoquées par les forces extérieures et calcul des déformations. Ces enseignements théoriques sont
Show more
Related lectures (70)
Support Types: Components and Reactions
Explains support types, reactions, and isostaticity in structures.
Bearings and Assemblies
Explores the significance of bearings in mechanical systems and the factors influencing their performance.
Introduction to Structures in Architecture
Introduces the functioning of structures in architecture, covering beams, arcs, cables, vaults, domes, rigidity, stability, and deformations.
Show more
Related publications (175)

RE:SLAB — a load bearing system for open-ended component reuse in building structures

Corentin Jean Dominique Fivet, Jan Friedrich Georg Brütting, Dario Redaelli, Alex-Manuel Muresan, Edisson Xavier Estrella Arcos

The construction industry plays a major role in the high levels of greenhouse gas emissions, resource consumption, and waste generation observed nowadays. Key to the circular economy, structural component reuse arises as a promising solution to divert cons ...
2024

Parametric Reduced Order Model of a Gas Bearings Supported Rotor

Fabio Nobile, Jürg Alexander Schiffmann, Dimitri Maurice Goutaudier

Gas bearings use pressurized gas as a lubricant to support and guide rotating machinery. These bearings have a number of advantages over traditional lubricated bearings, including higher efficiency in a variety of applications and reduced maintenance requi ...
2024

Model uncertainties in action effects and load bearing capacity calculation in statically indeterminate reinforced concrete structures

Aurelio Muttoni, Alain Nussbaumer, Xhemsi Malja

For the dimensioning and assessment of structures, it is common practice to compare action effects with sectional resistances. Extensive studies have been performed to quantify the model uncertainty on the resistance side. However, for statically indetermi ...
Ernst & Sohn2024
Show more
Related concepts (7)
Thrust bearing
A thrust bearing is a particular type of rotary bearing. Like other bearings they permanently rotate between parts, but they are designed to support a predominantly axial load. Thrust bearings come in several varieties. Thrust ball bearings, composed of bearing balls supported in a ring, can be used in low thrust applications where there is little axial load. Cylindrical thrust roller bearings consist of small cylindrical rollers arranged flat with their axes pointing to the axis of the bearing.
Tribology
Whenever two objects rub together, for instance wheels on a road, gears in a motor, there is both friction and wear. Different surfaces have different amounts of friction, for instance a smooth surface compared to a rough one. How much material comes off also depends upon the surfaces, and also how much pressure is used -- for instance using sandpaper to smooth out wood. One can also add liquids such as oils or water to reduce the friction, which is called lubrication.
Plain bearing
A plain bearing, or more commonly sliding contact bearing and slide bearing (in railroading sometimes called a solid bearing, journal bearing, or friction bearing), is the simplest type of bearing, comprising just a bearing surface and no rolling elements. Therefore, the journal (i.e., the part of the shaft in contact with the bearing) slides over the bearing surface. The simplest example of a plain bearing is a shaft rotating in a hole. A simple linear bearing can be a pair of flat surfaces designed to allow motion; e.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.